ﻻ يوجد ملخص باللغة العربية
We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $alpha geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $beta = d/alpha$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems.
Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report o
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise c
Large-scale quantum devices provide insights beyond the reach of classical simulations. However, for a reliable and verifiable quantum simulation, the building blocks of the quantum device require exquisite benchmarking. This benchmarking of large sc
Nonadiabatic molecular dynamics occur in a wide range of chemical reactions and femtochemistry experiments involving electronically excited states. These dynamics are hard to treat numerically as the systems complexity increases and it is thus desira
We discuss monitoring the time evolution of an analog quantum simulator via a quantum non-demolition (QND) coupling to an auxiliary `clock qubit. The QND variable of interest is the `energy of the quantum many-body system, represented by the Hamilton