ﻻ يوجد ملخص باللغة العربية
The high temperature expansion (HTE) of the specific heat of a spin system fails at low temperatures, even if it is combined with a Pade approximation. On the other hand we often have information about the low temperature asymptotics (LTA) of the system. Interpolation methods combine both kind of information, HTE and LTA, in order to obtain an approximation of the specific heat that holds for the whole temperature range. Here we revisit the entropy method that has been previously published and propose two variants that better cope with problems of the entropy method for gapped systems. We compare all three methods applied to the antiferromagnetic Haldane spin-one chain and especially apply the second variant, called Log Z method, to the cuboctahedron for different spin quantum numbers. In particular, we demonstrate that the interpolation method is able to detect an extra low-temperature maximum in the specific heat that may appear if a separation of two energy scales is present in the considered system. Finally we illustrate how interpolation also works for classical spin systems.
The magnetization at low temperatures for Nd0.5Sr0.5MnO3 and Nd0.5Ca0.5MnO3 samples showed a rapid increase with decreasing temperatures, contrary to a La0.5Ca0.5MnO3 sample. Specific heat measurement at low temperatures showed a Schottky-like anomal
A commercially available calorimeter has been used to investigate the specific heat of a high-quality kn single crystal. The addenda heat capacity of the calorimeter is determined in the temperature range $0.02 , mathrm{K} leq T leq 0.54 , mathrm{K}$
We studied the magnetization as a function of temperature and magnetic field in the compounds Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3, Sm0.5Ca0.5MnO3, Dy0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3. Ferromagnetic, antiferromagnetic and charge ordering transition in our sa
We report macroscopic magnetic measurements carried out in order to detect and characterize field-induced quantum entanglement in low dimensional spin systems. We analyze the pyroborate MgMnB_2O_5 and the and the warwickite MgTiOBO_3, systems with sp
We report measurements of the specific heat of the quantum spin liquid system SrCu2(BO3)2 in continuous magnetic fields H of up to 33 T. The specific heat vs temperature at zero field shows an anomaly at 8 K, marking the opening of a gap in the spin