ﻻ يوجد ملخص باللغة العربية
Investigation of HV-CMOS sensors for use as a tracking detector in the ATLAS experiment at the upgraded LHC (HL-LHC) has recently been an active field of research. A potential candidate for a pixel detector built in Silicon-On-Insulator (SOI) technology has already been characterized in terms of radiation hardness to TID (Total Ionizing Dose) and charge collection after a moderate neutron irradiation. In this article we present results of an extensive irradiation hardness study with neutrons up to a fluence of 1x10e16 neq/cm2. Charge collection in a passive pixelated structure was measured by Edge Transient Current Technique (E-TCT). The evolution of the effective space charge concentration was found to be compliant with the acceptor removal model, with the minimum of the space charge concentration being reached after 5x10e14 neq/cm2. An investigation of the in-pixel uniformity of the detector response revealed parasitic charge collection by the epitaxial silicon layer characteristic for the SOI design. The results were backed by a numerical simulation of charge collection in an equivalent detector layout.
An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-film High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silico
Edge-TCT and charge collection measurements with passive test structures made in LFoundry 150 nm CMOS process on p-type substrate with initial resistivity of over 3 k$Omega$cm are presented. Measurements were made before and after irradiation with re
HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We p
The barrel region of the CMS pixel detector will be equipped with ``n-in-n type silicon sensors. They are processed on DOFZ material, use the moderated p-spray technique and feature a bias grid. The latter leads to a small fraction of the pixel area
SOI (Silicon-On-Insulator) pixel sensor is promising technology for developing the high position resolution detector by integrating the small pixels and circuits in the monolithic way. The event driven (trigger mode) SOI based pixel sensor has also b