ﻻ يوجد ملخص باللغة العربية
We study dynamics of Dirac solitons in prototypical networks modeling them by the nonlinear Dirac equation on metric graphs. Soliton solutions of the nonlinear Dirac equation on simple metric graphs are obtained. It is shown that these solutions provide reflectionless vertex transmission of the Dirac solitons under suitable conditions. The constraints for bond nonlinearity coefficients, allowing reflectionless transmission over a Y-junction are derived. The analytical results are confirmed by direct numerical simulations.
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a new platform based on strong light-matter coupling between wavegui
Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the g
In this paper we present the results of parallel numerical computations of the long-term dynamics of linked vortex filaments in a three-dimensional FitzHugh-Nagumo excitable medium. In particular, we study all torus links with no more than 12 crossin
We study the transverse instability and dynamics of bright soliton stripes in two-dimensional nonlocal nonlinear media. Using a multiscale perturbation method, we derive analytically the first-order correction to the soliton shape, which features an
We study the multicritical behavior for the semimetal-insulator transitions on graphenes honeycomb lattice using the Gross-Neveu-Yukawa effective theory with two order parameters: the SO(3) (Heisenberg) order parameter describes the antiferromagnetic