ﻻ يوجد ملخص باللغة العربية
In this note, we prove the existence of weak solutions of the Chern-Ricci flow through blow downs of exceptional curves, as well as backwards smooth convergence away from the exceptional curves on compact complex surfaces. The smoothing property for the Chern-Ricci flow is also obtained on compact Hermitian manifolds of dimension n under a mild assumption.
This paper studies normalized Ricci flow on a nonparabolic surface, whose scalar curvature is asymptotically -1 in an integral sense. By a method initiated by R. Hamilton, the flow is shown to converge to a metric of constant scalar curvature -1. A r
In this article, we study the Ricci flow neckpinch in the context of metric measure spaces. We introduce the notion of a Ricci flow metric measure spacetime and of a weak (refined) super Ricci flow associated to convex cost functions (cost functions
We give a complete description of the global existence and convergence for the Ricci-Yang-Mills flow on $T^k$ bundles over Riemann surfaces. These results equivalently describe solutions to generalized Ricci flow and pluriclosed flow with symmetry.
We derive modified Perelman-type monotonicity formulas for solutions to the generalized Ricci flow equation with symmetry on principal bundles, which lead to rigidity and classification results for nonsingular solutions.
It is well known that the Kahler-Ricci flow on a Kahler manifold $X$ admits a long-time solution if and only if $X$ is a minimal model, i.e., the canonical line bundle $K_X$ is nef. The abundance conjecture in algebraic geometry predicts that $K_X$ m