ﻻ يوجد ملخص باللغة العربية
This paper studies normalized Ricci flow on a nonparabolic surface, whose scalar curvature is asymptotically -1 in an integral sense. By a method initiated by R. Hamilton, the flow is shown to converge to a metric of constant scalar curvature -1. A relative estimate of Greens function is proved as a tool.
We give a complete description of the global existence and convergence for the Ricci-Yang-Mills flow on $T^k$ bundles over Riemann surfaces. These results equivalently describe solutions to generalized Ricci flow and pluriclosed flow with symmetry.
The main result of this paper shows that, if $g(t)$ is a complete non-singular solution of the normalized Ricci flow on a noncompact 4-manifold $M$ of finite volume, then the Euler characteristic number $chi(M)geq0$. Moreover, $chi(M) eq 0$, there ex
In this note, we prove the existence of weak solutions of the Chern-Ricci flow through blow downs of exceptional curves, as well as backwards smooth convergence away from the exceptional curves on compact complex surfaces. The smoothing property for
In this paper, we study the singularities of two extended Ricci flow systems --- connection Ricci flow and Ricci harmonic flow using newly-defined curvature quantities. Specifically, we give the definition of three types of singularities and their co
We construct a discrete form of Hamiltons Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial geometry, S. These new algebraic equations are derived using the discrete formulation of Einsteins theory of general relativity known as