ترغب بنشر مسار تعليمي؟ اضغط هنا

A Note on Self-gravitating Radiation in AdS Spacetime

538   0   0.0 ( 0 )
 نشر من قبل Rong-Gen Cai
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate the equilibrium self-gravitating radiation in higher dimensional, plane symmetric anti-de Sitter space. We find that there exist essential differences from the spherically symmetric case: In each dimension ($dgeq 4$), there are maximal mass (density), maximal entropy (density) and maximal temperature configurations, they do not appear at the same central energy density; the oscillation behavior appearing in the spherically symmetric case, does not happen in this case; and the mass (density), as a function of the central energy density, increases first and reaches its maximum at a certain central energy density and then decreases monotonically in $ 4le d le 7$, while in $d geq 8$, besides the maximum, the mass (density) of the equilibrium configuration has a minimum: the mass (density) first increases and reaches its maximum, then decreases to its minimum and then increases to its asymptotic value monotonically. The reason causing the difference is discussed.



قيم البحث

اقرأ أيضاً

274 - Hyeong-Chan Kim 2018
We feed a black hole on a self-gravitating radiation and observe what happens during the process. Considering a spherical shell of radiation, we show that the contribution of self-gravity makes the thermodynamic interaction through the bottom of the shell be distinguished from thermodynamic interaction through its top. The growth of a black hole horizon appears to be a sudden jump rather than a sequential increase. We additionally show that much of the entropy will be absorbed into the black hole only at the last moment of the collapse.
116 - Y. Brihaye , T. Delsate 2013
We consider a model involving a self-interacting complex scalar field minimally coupled to gravity and emphasize the cylindrically symmetric classical solutions. A general ansatz is performed which transforms the field equations into a system of diff erential equations. In the generic case, the scalar field depends on the four space-time coordinates. The underlying Einstein vacuum equations are worth studying by themselve and lead to numerous analytic results extending the Kasner solutions. The solutions of the coupled system are -static as well as stationnary- gravitating Q-tubes of scalar matter which deform space-time.
The BTZ black hole belongs to a family of locally three-dimensional anti-de Sitter (AdS$_3$) spacetimes labeled by their mass $M$ and angular momentum $J$. The case $M ell geq |J|$, where $ell$ is the anti-de Sitter radius, provides the black hole. E xtending the metric to other values of of $M$ and $J$ leads to geometries with the same asymptotic behavior and global symmetries, but containing a naked singularity at the origin. The case $M ell leq -|J|$ corresponds to spinning conical singularities that are reasonably well understood. Here we examine the remaining case, that is $-|J|<Mell<|J|$. These naked singularities are mathematically acceptable solutions describing classical spacetimes. They are obtained by identifications of the covering pseudosphere in $mathbb{R}^{2,2}$ and are free of closed timelike curves. Here we study the causal structure and geodesics around these textit{overspinning} geometries. We present a review of the geodesics for the entire BTZ family. The geodesic equations are completely integrated, and the solutions are expressed in terms of elementary functions. Special attention is given to the determination of circular geodesics, where new results are found. According to the radial bounds, eight types of noncircular geodesics appear in the BTZ spacetimes. For the case of overspinning naked singularity, null and spacelike geodesics can reach infinity passing by a point nearest to the singularity, others extend from the central singularity to infinity, and others still have a radial upper bound and terminate at the singularity. Timelike geodesics cannot reach infinity; they either loop around the singularity or fall into it. The spatial projections of the geodesics (orbits) exhibit self-intersections, whose number is determined for null and spacelike geodesics, and it is found a special class of timelike geodesics whose spatial projections are closed.
156 - Zhong-Hua Li , Rong-Gen Cai 2009
We study the self-gravitating stars with a linear equation of state, $P=a rho$, in AdS space, where $a$ is a constant parameter. There exists a critical dimension, beyond which the stars are always stable with any central energy density; below which there exists a maximal mass configuration for a certain central energy density and when the central energy density continues to increase, the configuration becomes unstable. We find that the critical dimension depends on the parameter $a$, it runs from $d=11.1429$ to 10.1291 as $a$ varies from $a=0$ to 1. The lowest integer dimension for a dynamically stable self-gravitating configuration should be $d=12$ for any $a in [0,1]$ rather than $d=11$, the latter is the case of self-gravitating radiation configurations in AdS space.
113 - Justin C. Feng 2020
In this note, I describe an attempt to construct a phenomenological gravitational model at the boundary of the AdS manifold from the variation of boundary terms in the gravitational action. I find that for an AdS vacuum in the bulk, geometric constra ints require that the energy-momentum tensor has constant trace.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا