ترغب بنشر مسار تعليمي؟ اضغط هنا

Capturing ultrafast magnetic dynamics by time-resolved soft x-ray magnetic circular dichroism

115   0   0.0 ( 0 )
 نشر من قبل Kou Takubo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experiments of time-resolved x-ray magnetic circular dichroism (Tr-XMCD) and resonant x-ray scattering at a beamline BL07LSU in SPring-8 with a time-resolution of under 50 ps are presented. A micro-channel plate is utilized for the Tr-XMCD measurements at nearly normal incidence both in the partial electron and total fluorescence yield (PEY and TFY) modes at the L2,3 absorption edges of the 3d transition-metals in the soft x-ray region. The ultrafast photo-induced demagnetization within 50 ps is observed on the dynamics of a magnetic material of FePt thin film, having a distinct threshold of the photon density. The spectrum in the PEY mode is less-distorted both at the L2,3 edges compared with that in the TFY mode and has the potential to apply the sum rule analysis for XMCD spectra in pump-probed experiments.



قيم البحث

اقرأ أيضاً

X-ray magnetic circular dichroism (XMCD) has become an important and powerful tool because it allows the study of material properties in combination with elemental specificity, chemical state specificity, and magnetic specificity. A new soft X-ray ma gnetic circular dichroism apparatus has been developed at the Beijing Synchrotron Radiation Facility (BSRF). The apparatus combines three experimental conditions: ultra-high-vacuum environment, moderate magnetic fields and in-situ sample preparation to measure the absorption signal. We designed a C type dipole electromagnet that provides magnetic fields up to 0.5T in parallel (or anti-parallel) direction relative to the incoming X-ray beam. The performances of the electromagnet are measured and the results show good agreement with the simulation ones. Following film grown in situ by evaporation methods, XMCD measurements are performed. Combined polarization corrections, the magnetic moments of the Fe and Co films determined by sum rules are consistent with other theoretical predictions and experimental measurements.
We have developed an application of a one-dimensional micro-strip detector for capturing x-ray diffraction data in pulsed magnetic fields. This detector consists of a large array of 50 mu m-wide Si strips with a full-frame read out at 20 kHz. Its use substantially improves data-collection efficiency and quality as compared to point detectors, because diffraction signals are recorded along an arc in reciprocal space in a time-resolved manner. By synchronizing with pulsed fields, the entire field dependence of a two-dimensional swath of reciprocal space may be determined using a small number of field pulses.
Non-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows the stabilizat ion of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions. We report here on the ultrafast behavior of chiral DWs after optical pumping in perpendicularly magnetized asymmetric multilayers, probed using time-resolved circular dichroism in x-ray resonant magnetic scattering (CD-XRMS). We observe a picosecond transient reduction of the CD-XRMS, which is attributed to the spin current-induced coherent and incoherent torques within the continuously dependent spin texture of the DWs. We argue that a specific demagnetization of the inner structure of the DW induces a flow of hot spins from the interior of the neighboring magnetic domains. We identify this time-varying change of the DW textures shortly after the laser pulse as a distortion of the homochiral Neel shape toward a transient mixed Bloch-Neel-Bloch textures along a direction transverse to the DW. Our study highlights how time-resolved CD-XRMS can be a unique tool for studying the time evolution in other systems showing a non-collinear electric/magnetic ordering such as skyrmion lattices, conical/helical phases, as well as the recently observed antiskyrmion lattices, in metallic or insulating materials.
Resonant elastic X-ray scattering has been widely employed for exploring complex electronic ordering phenomena, like charge, spin, and orbital order, in particular in strongly correlated electronic systems. In addition, recent developments of pump-pr obe X-ray scattering allow us to expand the investigation of the temporal dynamics of such orders. Here, we introduce a new time-resolved Resonant Soft X-ray Scattering (tr-RSXS) endstation developed at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). This endstation has an optical laser (wavelength of 800 nm plus harmonics) as the pump source. Based on the commissioning results, the tr-RSXS at PAL-XFEL can deliver a soft X-ray probe (400-1300 eV) with a time resolution about ~100 fs without jitter correction. As an example, the temporal dynamics of a charge density wave on a high-temperature cuprate superconductor is demonstrated.
X-ray magnetic circular dichroism (XMCD) at the Eu L-edge (2p->5d) in two compounds exhibiting valence fluctuation, namely EuNi2(Si0.18Ge0.82)2 and EuNi2P2, has been investigated at pulsed high magnetic fields of up to 40 T. A distinct XMCD peak corr esponding to the trivalent state (Eu3+; f6), whose ground state is nonmagnetic (J=0), was observed in addition to the main XMCD peak corresponding to the magnetic (J=7/2) divalent state (Eu2+; f7). This result indicates that the 5d electrons belonging to both valence states are magnetically polarized. It was also found that the ratio P5d(3+)/P5d(2+) between the polarization of 5d electrons (P5d) in the Eu3+ state and that of Eu2+ is ~ 0.1 in EuNi2(Si0.18Ge0.82)2 and ~ 0.3 in EuNi2P2 at magnetic fields where their macroscopic magnetization values are the same. The possible origin of the XMCD of the Eu3+ state and an explanation of the dependence of P5d(3+)/P5d(2+) on the material are discussed in terms of hybridization between the conduction electrons and the f electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا