ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of Feshbach Resonances in ultra-cold 40 K spin mixtures

67   0   0.0 ( 0 )
 نشر من قبل Christoph Becker
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetically-tunable Feshbach resonances are an indispensable tool for experiments with atomic quantum gases. We report on twenty thus far unpublished Feshbach resonances and twenty one further probable Feshbach resonances in spin mixtures of ultracold fermionic 40 K with temperatures well below 100 nK. In particular, we locate a broad resonance at B=389.6 G with a magnetic width of 26.4 G. Here 1 G=10^-4 T. Furthermore, by exciting low-energy spin waves, we demonstrate a novel means to precisely determine the zero crossing of the scattering length for this broad Feshbach resonance. Our findings allow for further tunability in experiments with ultracold 40 K quantum gases.

قيم البحث

اقرأ أيضاً

We discuss the stability of homonuclear and heteronuclear mixtures of 3He and 4He atoms in the metastable 2^3S_1 state (He*) and predict positions and widths of Feshbach resonances by using the Asymptotic Bound-state Model (ABM). All calculations are performed without fit parameters, using emph{ab-initio} calculations of molecular potentials. One promising very broad Feshbach resonance (Delta B=72.9^{+18.3}_{-19.3} mT) is found that allows for tuning of the inter-isotope scattering length.
Experimental control of magnetic Fano-Feshbach resonances in ultracold $^{40}$K Fermi gases, using radio-frequency (RF) fields, is demonstrated. Spectroscopic measurements are made of three molecular levels within 50 MHz of the atomic continuum, alon g with their variation with magnetic field. Modifying the scattering properties by an RF field is shown by measuring the loss profile versus magnetic field. This work provides the high accuracy locations of ground molecular states near the s-wave Fano-Feshbach resonance, which can be used to study the crossover regime from a Bose-Einstein condensate to a Bardeen-Cooper-Schrieffer superfluid in presence of an RF field.
We present measurements of more than 80 magnetic Feshbach resonances in collisions of ultracold $^{23}$Na$^{40}$K with $^{40}$K. We assign quantum numbers to a group of low-field resonances and show that they are due to long-range states of the triat omic complex in which the quantum numbers of the separated atom and molecule are approximately preserved. The resonant states are not members of chaotic bath of short-range states. Similar resonances are expected to be a common feature of alkali-metal diatom + atom systems.
We report evidence for spin-rotation coupling in $p$-wave Feshbach resonances in an ultracold mixture of fermionic $^6$Li and bosonic $^{133}$Cs lifting the commonly observed degeneracy of states with equal absolute value of orbital-angular-momentum projection on the external magnetic field. By employing magnetic field dependent atom-loss spectroscopy we find triplet structures in $p$-wave resonances. Comparison with coupled-channel calculations, including contributions from both spin-spin and spin-rotation interactions, yields a spin-rotation coupling parameter $|gamma|=0.566(50)times10^{-3}$. Our findings highlight the potential of Feshbach resonances in revealing subtle molecular couplings and providing precise information on electronic and nuclear wavefunctions, especially at short internuclear distance. The existence of a non-negligible spin-rotation splitting may have consequences for future classifications of $p$-wave superfluid phases in spin-polarized fermions.
We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific example of a mixture of $^6$Li a nd $^{40}$K atoms. Our work addresses the central question of the increase in the stability of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement with the experimental benchmarks provided by our $^6$Li-$^{40}$K system. We finally present model calculations for other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا