ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifetime of Feshbach dimers in a Fermi-Fermi mixture of $^6$Li and $^{40}$K

73   0   0.0 ( 0 )
 نشر من قبل Michael Jag
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific example of a mixture of $^6$Li and $^{40}$K atoms. Our work addresses the central question of the increase in the stability of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement with the experimental benchmarks provided by our $^6$Li-$^{40}$K system. We finally present model calculations for other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.



قيم البحث

اقرأ أيضاً

We report on the realization of a Fermi-Fermi mixture of ultracold atoms that combines mass imbalance, tunability, and collisional stability. In an optically trapped sample of $^{161}$Dy and $^{40}$K, we identify a broad Feshbach resonance centered a t a magnetic field of $217,$G. Hydrodynamic expansion profiles in the resonant interaction regime reveal a bimodal behavior resulting from mass imbalance. Lifetime studies on resonance show a suppression of inelastic few-body processes by orders of magnitude, which we interpret as a consequence of the fermionic nature of our system. The resonant mixture opens up intriguing perspectives for studies on novel states of strongly correlated fermions with mass imbalance.
We report the first all-optical production of a superfluid Bose-Fermi mixture with two spin states of $^6$Li (fermion) and one spin state of $^7$Li (boson) under the resonant magnetic field of the s-wave Feshbach resonance of the fermions. Fermions a re cooled efficiently by evaporative cooling and they serve as coolant for bosons. As a result, a superfluid mixture can be achieved by using a simple experimental apparatus and procedures, as in the case of the all-optical production of a single Bose-Einstein condensate (BEC). We show that the all-optical method enables us to realize variety of ultracold Bose-Fermi mixtures.
We investigate magnetoassociation of ultracold fermionic Feshbach molecules in a mixture of $^{40}$K and $^{87}$Rb atoms, where we can create as many as $7times 10^4$ $^{40}$K$^{87}$Rb molecules with a conversion efficiency as high as 45%. In the per turbative regime, we find that the conversion efficiency depends linearly on the density overlap of the two gases, with a slope that matches a parameter-free model that uses only the atom masses and the known Feshbach resonance parameters. In the saturated regime, we find that the maximum number of Feshbach molecules depends on the atoms phase-space density. At higher temperatures, our measurements agree with a phenomenological model that successfully describes the formation of bosonic molecules from either Bose or Fermi gases. However, for quantum degenerate atom gas mixtures, we measure significantly fewer molecules than this model predicts.
Experimental control of magnetic Fano-Feshbach resonances in ultracold $^{40}$K Fermi gases, using radio-frequency (RF) fields, is demonstrated. Spectroscopic measurements are made of three molecular levels within 50 MHz of the atomic continuum, alon g with their variation with magnetic field. Modifying the scattering properties by an RF field is shown by measuring the loss profile versus magnetic field. This work provides the high accuracy locations of ground molecular states near the s-wave Fano-Feshbach resonance, which can be used to study the crossover regime from a Bose-Einstein condensate to a Bardeen-Cooper-Schrieffer superfluid in presence of an RF field.
We present a detailed theoretical and experimental study of Feshbach resonances in the 6Li-40K mixture. Particular attention is given to the inelastic scattering properties, which have not been considered before. As an important example, we thoroughl y investigate both elastic and inelastic scattering properties of a resonance that occurs near 155 G. Our theoretical predictions based on a coupled channels calculation are found in excellent agreement with the experimental results. We also present theoretical results on the molecular state that underlies the 155G resonance, in particular concerning its lifetime against spontaneous dissociation. We then present a survey of resonances in the system, fully characterizing the corresponding elastic and inelastic scattering properties. This provides the essential information to identify optimum resonances for applications relying on interaction control in this Fermi-Fermi mixture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا