ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Monitoring of Protoplanetary Discs

69   0   0.0 ( 0 )
 نشر من قبل Catarina Ubach
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star forming regions was measured at 7 and 15 mm and 3 and 6 cm. Results show that for most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to cm-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.



قيم البحث

اقرأ أيضاً

Tidal encounters in star clusters perturb discs around young protostars. In Cuello et al. (2019a, Paper I) we detailed the dynamical signatures of a stellar flyby in both gas and dust. Flybys produce warped discs, spirals with evolving pitch angles, increasing accretion rates, and disc truncation. Here we present the corresponding observational signatures of these features in optical/near-infrared scattered light and (sub-) millimeter continuum and CO line emission. Using representative prograde and retrograde encounters for direct comparison, we post-process hydrodynamical simulations with radiative transfer methods to generate a catalogue of multi-wavelength observations. This provides a reference to identify flybys in recent near-infrared and sub-millimetre observations (e.g., RW Aur, AS 205, HV Tau & DO Tau, FU Ori, V2775 Ori, and Z CMa).
Misalignments between the orbital planes of planets and the equatorial planes of their host stars have been observed in our solar system, in transiting exoplanets, and in the orbital planes of debris discs. We present a mechanism that causes such a s pin-orbit misalignment for a protoplanetary disc due to its movement through an ambient medium. Our physical explanation of the mechanism is based on the theoretical solutions to the Stark problem. We test this idea by performing self-consistent hydrodynamical simulations and simplified gravitational $N$-body simulations. The $N$-body model reduces the mechanism to the relevant physical processes. The hydrodynamical simulations show the mechanism in its full extent, including gas-dynamical and viscous processes in the disc which are not included in the theoretical framework. We find that a protoplanetary disc embedded in a flow changes its orientation as its angular momentum vector tends to align parallel to the relative velocity vector. Due to the force exerted by the flow, orbits in the disc become eccentric, which produces a net torque and consequentially changes the orbital inclination. The tilting of the disc causes it to contract. Apart from becoming lopsided, the gaseous disc also forms a spiral arm even if the inclination does not change substantially. The process is most effective at high velocities and observational signatures are therefore mostly expected in massive star-forming regions and around winds or supernova ejecta. Our $N$-body model indicates that the interaction with supernova ejecta is a viable explanation for the observed spin-orbit misalignment in our solar system.
Computing the flow from externally FUV irradiated protoplanetary discs requires solving complicated and expensive photodissociation physics iteratively in conjunction with hydrodynamics. Previous studies have therefore been limited to 1D models of th is process. In this paper we compare 2D-axisymmetric models of externally photoevaporating discs with their 1D analogues, finding that mass loss rates are consistent to within a factor four. The mass loss rates in 2D are higher, in part because half of the mass loss comes from the disc surface (which 1D models neglect). 1D mass loss rates used as the basis for disc viscous evolutionary calculations are hence expected to be conservative. We study the anatomy of externally driven winds including the streamline morphology, kinematic, thermal and chemical structure. A key difference between the 1D and 2D models is in the chemical abundances. For instance in the 2D models CO can be dissociated at smaller radial distances from the disc outer edge than in 1D calculations because gas is photodissociated by radiation along trajectories that are assumed infinitely optically thick in 1D models. Multidimensional models will hence be critical for predicting observable signatures of environmentally photoevaporating protoplanetary discs.
Many theoretical studies have shown that external photoevaporation from massive stars can severely truncate, or destroy altogether, the gaseous protoplanetary discs around young stars. In tandem, several observational studies report a correlation bet ween the mass of a protoplanetary disc and its distance to massive ionising stars in star-forming regions, and cite external photoevaporation by the massive stars as the origin of this correlation. We present N-body simulations of the dynamical evolution of star-forming regions and determine the mass-loss in protoplanetary discs from external photoevaporation due to far ultraviolet (FUV) and extreme ultraviolet (EUV) radiation from massive stars. We find that projection effects can be significant, in that low-mass disc-hosting stars that appear close to the ionising sources may be fore- or background stars in the star-forming region. We find very little evidence in our simulations for a trend in increasing disc mass with increasing distance from the massive star(s), even when projection effects are ignored. Furthermore, the dynamical evolution of these young star-forming regions moves stars whose discs have been photoevaporated to far-flung locations, away from the ionising stars, and we suggest that any correlation between disc mass and distance the ionising star is either coincidental, or due to some process other than external photoevaporation.
A key problem in protoplanetary disc evolution is understanding the efficiency of dust radial drift. This process makes the observed dust disc sizes shrink on relatively short timescales, implying that discs started much larger than what we see now. In this paper we use an independent constraint, the gas radius (as probed by CO rotational emission), to test disc evolution models. In particular, we consider the ratio between the dust and gas radius, $R_{rm CO}/R_{rm dust}$. We model the time evolution of protoplanetary discs under the influence of viscous evolution, grain growth, and radial drift. Then, using the radiative transfer code RADMC with approximate chemistry, we compute the dust and gas radii of the models and investigate how $R_{rm CO}/R_{rm dust}$ evolves. Our main finding is that, for a broad range of values of disc mass, initial radius, and viscosity, $R_{rm CO}/R_{rm dust}$ becomes large (>5) after only a short time (<1 Myr) due to radial drift. This is at odds with measurements in young star forming regions such as Lupus, which find much smaller values, implying that dust radial drift is too efficient in these models. Substructures, commonly invoked to stop radial drift in large, bright discs, must then be present, although currently unresolved, in most discs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا