ﻻ يوجد ملخص باللغة العربية
Computing the flow from externally FUV irradiated protoplanetary discs requires solving complicated and expensive photodissociation physics iteratively in conjunction with hydrodynamics. Previous studies have therefore been limited to 1D models of this process. In this paper we compare 2D-axisymmetric models of externally photoevaporating discs with their 1D analogues, finding that mass loss rates are consistent to within a factor four. The mass loss rates in 2D are higher, in part because half of the mass loss comes from the disc surface (which 1D models neglect). 1D mass loss rates used as the basis for disc viscous evolutionary calculations are hence expected to be conservative. We study the anatomy of externally driven winds including the streamline morphology, kinematic, thermal and chemical structure. A key difference between the 1D and 2D models is in the chemical abundances. For instance in the 2D models CO can be dissociated at smaller radial distances from the disc outer edge than in 1D calculations because gas is photodissociated by radiation along trajectories that are assumed infinitely optically thick in 1D models. Multidimensional models will hence be critical for predicting observable signatures of environmentally photoevaporating protoplanetary discs.
There is growing theoretical and observational evidence that protoplanetary disc evolution may be significantly affected by the canonical levels of far ultraviolet (FUV) radiation found in a star forming environment, leading to substantial stripping
We present an open access grid of 3930 calculations of externally evaporating protoplanetary discs. This spans a range of disc sizes (1-400AU), disc masses, UV field strengths (10-10$^4$G$_0$) and stellar masses (0.05-1.9M$_odot$). The grid is public
The stellar birth environment can significantly shorten protoplanetary disc (PPD) lifetimes due to the influence of stellar feedback mechanisms. The degree to which these mechanisms suppress the time and mass available for planet formation is depende
We present the first ALMA survey of protoplanetary discs at 3 mm, targeting 36 young stellar objects in the Lupus star-forming region with deep observations (sensitivity 20-50 microJy/beam) at ~0.35 resolution (~50 au). Building on previous ALMA surv
Tidal encounters in star clusters perturb discs around young protostars. In Cuello et al. (2019a, Paper I) we detailed the dynamical signatures of a stellar flyby in both gas and dust. Flybys produce warped discs, spirals with evolving pitch angles,