ترغب بنشر مسار تعليمي؟ اضغط هنا

Installation Progress At The PIP-II Injector Test At Fermilab

279   0   0.0 ( 0 )
 نشر من قبل Baffes, Curtis M.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A CW-compatible, pulsed H- superconducting linac PIP-II is being planned to upgrade Fermilabs injection complex. To validate the front-end concept, a test accelerator (The PIP-II Injector Test, formerly known as PXIE) is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Continuous Wave (CW) mode, and a 10 m-long Medium Energy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.



قيم البحث

اقرأ أيضاً

103 - L. Prost , R. Andrews , C. Baffes 2018
The Warm Front End (WFE) of the Proton Improvement Plan II Injector Test at Fermilab has been constructed to its full length. It includes a 15-mA DC, 30-keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT) with a switching dipole magnet, a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) with various diagnostics and a dump. This report presents the commissioning status, focusing on beam measurements in the MEBT. In particular, a beam with the parameters required for injection into the Booster (5 mA, 0.55 ms macro-pulse at 20 Hz) was transported through the WFE.
The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW compatible, pulsed H- SRF linac. To validate the concept of the front-end of such machine, a tes t accelerator known as PIP-II Injector Test (PIP2IT) is under construction. It includes a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CWRFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the warm front end.
105 - L. Lari C.n Baffes 2018
PIP-II is the Fermilabs flagship project for providing powerful, high-intensity proton beams to the laboratorys experiments. The heart of PIP-II is an 800-MeV superconducting linac accelerator. It will be located in a new tunnel with new service buil dings and connected to the present Booster through a new transfer line. To support the design of civil engineering and mechanical integration, this paper provides preliminary estimation of radiation level in the gallery at an operational beam loss limit of 0.1 W/m, by means of Monte Carlo calculations with FLUKA and MARS15 codes.
A 2.1 MeV, 10 mA CW RFQ has been installed and commissioned at Fermilabs test accelerator known as PIP-II Injector Test. This report describes the measurements of the beam properties after acceleration in the RFQ, including the energy and emittance.
For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا