ﻻ يوجد ملخص باللغة العربية
A new method to solve the Dirac equation on a 3D lattice is proposed, in which the variational collapse problem is avoided by the inverse Hamiltonian method and the fermion doubling problem is avoided by performing spatial derivatives in momentum space with the help of the discrete Fourier transform, i.e., the spectral method. This method is demonstrated in solving the Dirac equation for a given spherical potential in 3D lattice space. In comparison with the results obtained by the shooting method, the differences in single particle energy are smaller than $10^{-4}$~MeV, and the densities are almost identical, which demonstrates the high accuracy of the present method. The results obtained by applying this method without any modification to solve the Dirac equations for an axial deformed, non-axial deformed, and octupole deformed potential are provided and discussed.
We solve a singe-particle Dirac equation with Woods-Saxon potentials using an iterative method in the coordinate space representation. By maximizing the expectation value of the inverse of the Dirac Hamiltonian, this method avoids the variational col
An efficient method, preconditioned conjugate gradient method with a filtering function (PCG-F), is proposed for solving iteratively the Dirac equation in 3D lattice space for nuclear systems. The filtering function is adopted to avoid the variationa
An efficient solution of the Dirac Hamiltonian flow equations has been proposed through a novel expandsion with the inverse of the Dirac effective mass. The efficiency and accuracy of this new expansion have been demonstrated by reducing a radial Dir
The stability of the linear chain structure of three $alpha$ clusters for $^{12}$C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the
The toroidal states in $^{28}$Si with spin extending to extremely high are investigated with the cranking covariant density functional theory on a 3D lattice. Thirteen toroidal states with spin $I$ ranging from 0 to 56$hbar$ are obtained, and their s