ﻻ يوجد ملخص باللغة العربية
The toroidal states in $^{28}$Si with spin extending to extremely high are investigated with the cranking covariant density functional theory on a 3D lattice. Thirteen toroidal states with spin $I$ ranging from 0 to 56$hbar$ are obtained, and their stabilities against particle emissions are studied by analyzing the density distributions and potentials. The excitation energies of the toroidal states at $I=28$, 36, 44$hbar$ reasonably reproduce the observed three resonances extracted from the 7-$alpha$ de-excitation of $^{28}$Si. The $alpha$ clustering of these toroidal states is supported by the $alpha$-localization function.
Time-dependent covariant density functional theory with the successful density functional PCPK1 is developed in a three-dimensional coordinate space without any symmetry restrictions, and benchmark calculations for the 16O + 16O reaction are performe
The stability of the linear chain structure of three $alpha$ clusters for $^{12}$C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the
A systematic global investigation of differential charge radii has been performed within the CDFT framework for the first time. Theoretical results obtained with conventional covariant energy density functionals and separable pairing interaction are
The three-dimensional tilted axis cranking covariant density functional theory (3D-TAC CDFT) is used to study the chiral modes in $^{135}$Nd. By modeling the motion of the nucleus in rotating mean field as the interplay between the single-particle mo
The neutron and proton drip lines represent the limits of the nuclear landscape. While the proton drip line is measured experimentally up to rather high $Z$-values, the location of the neutron drip line for absolute majority of elements is based on t