ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetics Modeling of Nanoparticle Growth on and Evaporation off Nanotubes

65   0   0.0 ( 0 )
 نشر من قبل Vladimir Privman
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A kinetic Monte Carlo approach is developed for studying growth and evaporation of nanoparticles on/off nanotubes. This study has been motivated by recent experimental advances in using nanoparticle evaporation (sublimation) off nanoparticle-decorated nanotubes for nanoscale thermometry. We demonstrate that the considered kinetic Monte Carlo approach can reproduce features of the process that are not included in phenomenological thermodynamic modeling, as well as provide snapshots of the growth and evaporation process morphology.



قيم البحث

اقرأ أيضاً

122 - `Oscar Iglesias 2012
In this contribution, we will present a review of our works on the time dependence of magnetization in nanoparticle systems starting from non-interacting systems, presenting a general theoretical framework for the analysis of relaxation curves which is based on the so-called $svar$ scaling method. We will detail the basics and explain its range of validity, showing also its application in experimental measurements of magnetic relaxation. We will also discuss how it can be applied to determine the energy barrier distributions responsible for the relaxation. Next, we will show how the proposed methodology can be extended to include dipolar interactions between the nanoparticles. A thorough presentation of the method will be presented as exemplified for a 1D chain of interacting spins, with emphasis put on showing the microscopic origin of the observed macroscopic time dependence of the magnetization. Experimental application examples will be given showing that the validity of the method is not limited to 1D case.
Magnetic nanoparticles are useful biological probes as well as therapeutic agents. There have been several approaches used to model nanoparticle magnetization dynamics for both Brownian as well as Neel rotation. The magnetizations are often of intere st and can be compared with experimental results. Here we summarize these approaches including the Stoner-Wohlfarth approach, and stochastic approaches including thermal fluctuations. Non-equilibrium related temperature effects can be described by a distribution function approach (Fokker-Planck equation) or a stochastic differential equation (Langevin equation). Approximate models in several regimes can be derived from these general approaches to simplify implementation.
We model shell formation of core-shell noble metal nanoparticles. A recently developed kinetic Monte Carlo approach is utilized to reproduce growth morphologies realized in recent experiments on core-shell nanoparticle synthesis, which reported smoot h epitaxially grown shells. Specifically, we identify growth regimes that yield such smooth shells, but also those that lead to the formation of shells made of small clusters. The developed modeling approach allows us to qualitatively study the effects of temperature and supply the shell-metal atoms on the resulting shell morphology, when grown on a pre-synthesized nanocrystal core.
We aim to provide engineers with an introduction to the non-equilibrium Greens function (NEGF) approach, which provides a powerful conceptual tool and a practical analysis method to treat small electronic devices quantum mechanically and atomisticall y. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices are between diffusive and phase coherent. We introduce the non equilbrium Greens function (NEGF) approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of layered structures such as nanotransistors, carbon nanotubes and nanowires. An application of the NEGF method in the ballistic and scattering limits to silicon nanotransistors is discussed.
149 - Jiarul Midya , Subir K. Das 2020
We have used molecular dynamics simulations for a comprehensive study of phase separation in a two-dimensional single component off-lattice model where particles interact through the Lennard-Jones potential. Via state-of-the-art methods we have analy zed simulation data on structure, growth and aging for nonequilibrium evolutions in the model. These data were obtained following quenches of well-equilibrated homogeneous configurations, with density close to the critical value, to various temperatures inside the miscibility gap, having vapor-liquid as well as vapor-solid coexistence. For the vapor-liquid phase separation we observe that $ell$, the average domain length, grows with time ($t$) as $t^{1/2}$, a behavior that has connection with hydrodynamics. At low enough temperature, a sharp crossover of this time dependence to a much slower, temperature dependent, growth is identified within the time scale of our simulations, implying solid-like final state of the high density phase. This crossover is, interestingly, accompanied by strong differences in domain morphology and other structural aspects between the two situations. For aging, we have presented results for the order-parameter autocorrelation function. This quantity exhibits data-collapse with respect to $ell/ell_w$, $ell$ and $ell_w$ being the average domain lengths at times $t$ and $t_w$ ($leq t$), respectively, the latter being the age of a system. Corresponding scaling function follows a power-law decay: $~sim (ell/ell_w)^{-lambda}$, for $tgg t_w$. The decay exponent $lambda$, for the vapor-liquid case, is accurately estimated via the application of an advanced finite-size scaling method. The obtained value is observed to satisfy a bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا