ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling of Nanoscale Devices

281   0   0.0 ( 0 )
 نشر من قبل Dmitri Nikonov
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to provide engineers with an introduction to the non-equilibrium Greens function (NEGF) approach, which provides a powerful conceptual tool and a practical analysis method to treat small electronic devices quantum mechanically and atomistically. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices are between diffusive and phase coherent. We introduce the non equilbrium Greens function (NEGF) approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of layered structures such as nanotransistors, carbon nanotubes and nanowires. An application of the NEGF method in the ballistic and scattering limits to silicon nanotransistors is discussed.

قيم البحث

اقرأ أيضاً

125 - B. Kulchytskyy , G. Gervais , 2013
We have performed quantum Monte Carlo simulations measuring the finite size and temperature superfluid response of helium-4 to the linear and rotational motion of the walls of a nanopore. Within the two-fluid model, the portion of the normal liquid d ragged along with the boundaries is dependent on the type of motion and the resulting anisotropic superfluid density saturates far below unity at T=0.5 K. The origin of the saturation is uncovered by computing the spatial distribution of superfluidity, with only the core of the nanopore exhibiting any evidence of phase coherence. The superfluid core displays scaling behavior consistent with Luttinger liquid theory, thereby providing an experimental test for the emergence of a one dimensional quantum liquid.
This mini-review is intended as a short introduction to electron flow in nanostructures. Its aim is to provide a brief overview of this topic for people who are interested in the thermodynamics of quantum systems but know little about nanostructures. We particularly emphasize devices that work in the steady-state, such as simple thermoelectrics, but also mention cyclically driven heat engines. We do not aim to be either complete or rigorous, but use a few pages to outline some of the main ideas in the topic.
In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, phot ons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without ..... (SEE THE PDF FOR THE REST OF THIS ABSTRACT)
Understanding transport processes in complex nanoscale systems, like ionic conductivities in nanofluidic devices or heat conduction in low dimensional solids, poses the problem of examining fluctuations of currents within nonequilibrium steady states and relating those fluctuations to nonlinear or anomalous responses. We have developed a systematic framework for computing distributions of time integrated currents in molecular models and relating cumulants of those distributions to nonlinear transport coefficients. The approach elaborated upon in this perspective follows from the theory of dynamical large deviations, benefits from substantial previous formal development, and has been illustrated in several applications. The framework provides a microscopic basis for going beyond traditional hydrodynamics in instances where local equilibrium assumptions break down, which are ubiquitous at the nanoscale.
We present an automatic measurement platform that enables the characterization of nanodevices by electrical transport and optical spectroscopy as a function of uniaxial stress. We provide insights into and detailed descriptions of the mechanical devi ce, the substrate design and fabrication, and the instrument control software, which is provided under open-source license. The capability of the platform is demonstrated by characterizing the piezo-resistance of an InAs nanowire device using a combination of electrical transport and Raman spectroscopy. The advantages of this measurement platform are highlighted by comparison with state-of-the-art piezo-resistance measurements in InAs nanowires. We envision that the systematic application of this methodology will provide new insights into the physics of nanoscale devices and novel materials for electronics, and thus contribute to the assessment of the potential of strain as a technology booster for nanoscale electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا