ﻻ يوجد ملخص باللغة العربية
We report a measurement of the electric dipole moment of the $tau$ lepton ($d_tau$) using an 833 fb$^{-1}$ data sample collected near the $Upsilon(4S)$ resonance, with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. Using an optimal observable method, we obtain the real and imaginary parts of $d_tau$ as ${rm Re}(d_tau) = ( -0.62 pm 0.63 ) times 10^{-17} ~e{rm cm}$ and ${rm Im}(d_tau) = ( -0.40 pm 0.32 ) times 10^{-17} ~e{rm cm}$, respectively. These results are consistent with no electric dipole moment at the present level of experimental sensitivity and improve the sensitivity by about a factor of three.
A permanent electric dipole moment of fundamental spin-1/2 particles violates both parity (P) and time re- versal (T) symmetry, and hence, also charge-parity (CP) symmetry since there is no sign of CPT-violation. The search for a neutron electric dip
Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Details on the experimental apparatus
An experimental search for an electric-dipole moment (EDM) of the neutron has been carried out at the Institut Laue-Langevin (ILL), Grenoble. Spurious signals from magnetic-field fluctuations were reduced to insignificance by the use of a cohabiting
A new measurement of the neutron EDM, using Ramseys method of separated oscillatory fields, is in preparation at the new high intensity source of ultra-cold neutrons (UCN) at the Paul Scherrer Institute, Villigen, Switzerland (PSI). The existence of
The outstanding progress has been made in reducing the upper bounds on EDM of several particles. Even if significant challenges must be overcome to further improve these limits, it is still one of the best chances to detect new type of interactions b