ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting detector for visible and near-infrared quantum emitters

50   0   0.0 ( 0 )
 نشر من قبل Stepan Bolshedvorskii Mr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Further development of quantum emitter based communication and sensing applications intrinsically depends on the availability of robust single-photon detectors. Here, we demonstrate a new generation of superconducting single-photon detectors specifically optimized for the 500-1100 nm wavelength range, which overlaps with the emission spectrum of many interesting solid-state atom-like systems, such as nitrogen-vacancy and silicon-vacancy centers in diamond. The fabricated detectors have a wide dynamic range (up to 350 million counts per second), low dark count rate (down to 0.1 counts per second), excellent jitter (62 ps), and the possibility of on-chip integration with a quantum emitter. In addition to performance characterization, we tested the detectors in real experimental conditions involving nanodiamond nitrogen-vacancy emitters enhanced by a hyperbolic metamaterial.

قيم البحث

اقرأ أيضاً

103 - A. Durand , Y. Baron , W. Redjem 2020
We report the detection of individual emitters in silicon belonging to seven different families of optically-active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employe d for integrated photonics. Single photon emission is demonstrated over the [1.1,1.55]-$mu$m range, spanning the O- and C-telecom bands. We analyse their photoluminescence spectrum, dipolar emission and optical relaxation dynamics at 10K. For a specific family, we show a constant emission intensity at saturation from 10K to temperatures well above the 77K-liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these novel artificial atoms are promising candidates for Si-based quantum technologies.
We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark nois e of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6times10^4$ photons/(s$cdot$mW$cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.
In this paper, we study the optical properties of single defects emitting in the near infrared in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implan tation and annealing. We show that single defects exhibit several striking features at cryogenic temperature: the photoluminescence is strongly concentrated into a sharp zero-phonon line in the near infrared, the radiative lifetime is in the nanosecond range and the emission is perfectly linearly polarized. The spectral stability of the defects is then investigated. An optical resonance linewidth of 4 GHz is measured using resonant excitation on the zero-phonon line. Although Fourier-transform limited emission is not achieved, our results show that it might be possible to use consecutive photons emitted in the near infrared by single defects in diamond nanocrystals to perform two photon interference experiments, which are at the heart of linear quantum computing protocols.
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared. The challenging task of revealing non-classicality in mid-infrared light, e.~g. in quantum cascade lasers emission, requires a high-performance detec tion system. Through the intensity noise power spectral density analysis of the differential signal coming from the incident radiation, we show that our setup is shot-noise limited. We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
Superconducting nanostrip photon detectors have been used as single photon detectors, which can discriminate only photons presence or absence. It has recently been found that they can discriminate the number of photons by analyzing the output signal waveform, and they are expected to be used in various fields, especially in optical quantum information processing. Here, we improve the photon-number-resolving performance for light with a high-average photon number by pattern matching of the output signal waveform. Furthermore, we estimate the positive-operator-valued measure of the detector by a quantum detector tomography. The result shows that the device has photon-number-resolving performance up to five photons without any multiplexing or arraying, indicating that it is useful as a photon-number-resolving detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا