ﻻ يوجد ملخص باللغة العربية
We investigate the origin of imperfections in the fidelity of a two-photon controlled-phase gate based on two-level-emitter non-linearities. We focus on a passive system that operates without external modulations to enhance its performance. We demonstrate that the fidelity of the gate is limited by opposing requirements on the input pulse width for one- and two-photon scattering events. For one-photon scattering, the spectral pulse width must be narrow compared to the emitter linewidth, while two-photon scattering processes require the pulse width and emitter linewidth to be comparable. We find that these opposing requirements limit the maximum fidelity of the two-photon controlled-phase gate for Gaussian photon pulses to 84%.
To realize fault-tolerant quantum computing, it is necessary to store quantum information in logical qubits with error correction functions, realized by distributing a logical state among multiple physical qubits or by encoding it in the Hilbert spac
We apply our recently developed theory of frequency-filtered and time-resolved N-photon correlations to study the two-photon spectra of a variety of systems of increasing complexity: single mode emitters with two limiting statistics (one harmonic osc
We report the experimental observation of the nonlocal geometric phase in Hanbury Brown-Twiss polarized intensity interferometry. The experiment involves two independent, polar- ized, incoherent sources, illuminating two polarized detectors. Varying
We address the textbook problem of dynamics of a spin placed in a dc magnetic field and subjected to an ac drive. If the drive is polarized in the plane perpendicular to the dc field, the drive photons are resonantly absorbed when the spacing between
The theoretical community has found interest in the ability of a two-level atom to generate a strong many-body interaction with light under pulsed excitation. Single-photon generation is the most well-known effect, where a short Gaussian laser pulse