ترغب بنشر مسار تعليمي؟ اضغط هنا

Blind Measurement Selection: A Random Matrix Theory Approach

95   0   0.0 ( 0 )
 نشر من قبل Khalil Elkhalil
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers the problem of selecting a set of $k$ measurements from $n$ available sensor observations. The selected measurements should minimize a certain error function assessing the error in estimating a certain $m$ dimensional parameter vector. The exhaustive search inspecting each of the $nchoose k$ possible choices would require a very high computational complexity and as such is not practical for large $n$ and $k$. Alternative methods with low complexity have recently been investigated but their main drawbacks are that 1) they require perfect knowledge of the measurement matrix and 2) they need to be applied at the pace of change of the measurement matrix. To overcome these issues, we consider the asymptotic regime in which $k$, $n$ and $m$ grow large at the same pace. Tools from random matrix theory are then used to approximate in closed-form the most important error measures that are commonly used. The asymptotic approximations are then leveraged to select properly $k$ measurements exhibiting low values for the asymptotic error measures. Two heuristic algorithms are proposed: the first one merely consists in applying the convex optimization artifice to the asymptotic error measure. The second algorithm is a low-complexity greedy algorithm that attempts to look for a sufficiently good solution for the original minimization problem. The greedy algorithm can be applied to both the exact and the asymptotic error measures and can be thus implemented in blind and channel-aware fashions. We present two potential applications where the proposed algorithms can be used, namely antenna selection for uplink transmissions in large scale multi-user systems and sensor selection for wireless sensor networks. Numerical results are also presented and sustain the efficiency of the proposed blind methods in reaching the performances of channel-aware algorithms.



قيم البحث

اقرأ أيضاً

In this paper, using tools from asymptotic random matrix theory, a new cooperative scheme for frequency band sensing is introduced for both AWGN and fading channels. Unlike previous works in the field, the new scheme does not require the knowledge of the noise statistics or its variance and is related to the behavior of the largest and smallest eigenvalue of random matrices. Remarkably, simulations show that the asymptotic claims hold even for a small number of observations (which makes it convenient for time-varying topologies), outperforming classical energy detection techniques.
Computational sensing strategies often suffer from calibration errors in the physical implementation of their ideal sensing models. Such uncertainties are typically addressed by using multiple, accurately chosen training signals to recover the missin g information on the sensing model, an approach that can be resource-consuming and cumbersome. Conversely, blind calibration does not employ any training signal, but corresponds to a bilinear inverse problem whose algorithmic solution is an open issue. We here address blind calibration as a non-convex problem for linear random sensing models, in which we aim to recover an unknown signal from its projections on sub-Gaussian random vectors, each subject to an unknown positive multiplicative factor (or gain). To solve this optimisation problem we resort to projected gradient descent starting from a suitable, carefully chosen initialisation point. An analysis of this algorithm allows us to show that it converges to the exact solution provided a sample complexity requirement is met, i.e., relating convergence to the amount of information collected during the sensing process. Interestingly, we show that this requirement grows linearly (up to log factors) in the number of unknowns of the problem. This sample complexity is found both in absence of prior information, as well as when subspace priors are available for both the signal and gains, allowing a further reduction of the number of observations required for our recovery guarantees to hold. Moreover, in the presence of noise we show how our descent algorithm yields a solution whose accuracy degrades gracefully with the amount of noise affecting the measurements. Finally, we present some numerical experiments in an imaging context, where our algorithm allows for a simple solution to blind calibration of the gains in a sensor array.
We consider the problem of resolving $ r$ point sources from $n$ samples at the low end of the spectrum when point spread functions (PSFs) are not known. Assuming that the spectrum samples of the PSFs lie in low dimensional subspace (let $s$ denote t he dimension), this problem can be reformulated as a matrix recovery problem, followed by location estimation. By exploiting the low rank structure of the vectorized Hankel matrix associated with the target matrix, a convex approach called Vectorized Hankel Lift is proposed for the matrix recovery. It is shown that $ngtrsim rslog^4 n$ samples are sufficient for Vectorized Hankel Lift to achieve the exact recovery. For the location retrieval from the matrix, applying the single snapshot MUSIC method within the vectorized Hankel lift framework corresponds to the spatial smoothing technique proposed to improve the performance of the MMV MUSIC for the direction-of-arrival (DOA) estimation.
In this paper, a general algorithm is proposed for rate analysis and code design of linear index coding problems. Specifically a solution for minimum rank matrix completion problem over finite fields representing the linear index coding problem is de vised in order to find the optimum transmission rate given vector length and size of the field. The new approach can be applied to both scalar and vector linear index coding.
157 - Elad Romanov , Matan Gavish 2017
In matrix recovery from random linear measurements, one is interested in recovering an unknown $M$-by-$N$ matrix $X_0$ from $n<MN$ measurements $y_i=Tr(A_i^T X_0)$ where each $A_i$ is an $M$-by-$N$ measurement matrix with i.i.d random entries, $i=1,l dots,n$. We present a novel matrix recovery algorithm, based on approximate message passing, which iteratively applies an optimal singular value shrinker -- a nonconvex nonlinearity tailored specifically for matrix estimation. Our algorithm typically converges exponentially fast, offering a significant speedup over previously suggested matrix recovery algorithms, such as iterative solvers for Nuclear Norm Minimization (NNM). It is well known that there is a recovery tradeoff between the information content of the object $X_0$ to be recovered (specifically, its matrix rank $r$) and the number of linear measurements $n$ from which recovery is to be attempted. The precise tradeoff between $r$ and $n$, beyond which recovery by a given algorithm becomes possible, traces the so-called phase transition curve of that algorithm in the $(r,n)$ plane. The phase transition curve of our algorithm is noticeably better than that of NNM. Interestingly, it is close to the information-theoretic lower bound for the minimal number of measurements needed for matrix recovery, making it not only state-of-the-art in terms of convergence rate, but also near-optimal in terms of the matrices it successfully recovers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا