ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Evidences for Static Charge Density Waves in Iron Oxy-pnictides

56   0   0.0 ( 0 )
 نشر من قبل Alberto Martinelli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this Letter we report high-resolution synchrotron X-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave-vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge-driven.



قيم البحث

اقرأ أيضاً

X-ray emission and absorption spectroscopies are jointly used as fast probes to determine the evolution as a function of doping of the fluctuating local magnetic moments in K- and Cr- hole-doped BaFe2As2. An increase in the local moment with hole-dop ing is found, supporting the theoretical scenario in which a Mott insulating state that would be realized for half-filled conduction bands has an influence throughout the phase diagram of these iron-pnictides.
93 - W. Zhou , X. Z. Xing , H. J. Zhao 2016
Dome-shape superconductivity phase diagram can commonly be observed in cuprate and iron-based systems via tuning parameters such as charge carrier doping, pressure, bond angle, and etc. We report doping electrons from transition-metal elements (TM = Co, Ni) substitution can induce high-Tc superconductivity around 35 K in Ca0.94La0.06Fe2As2, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Unexpectedly, the onset critical temperature for the high-Tc superconductivity stays constant for a wide range of TM doping. Possible extrinsic factors like phase separation, chemical inhomogeneity, and charge carrier cancelation effect are all excluded. This anomalous charge carrier density independent SC is very similar to the interface superconductivity in La2-xSrxCuO4-La2CuO4 bilayer system. The further verified two-dimensional (2D) nature of superconductivity by the Tinkhams angular-dependent critical field model as well as by the angle-resolved magneto-resistance measurements jointly supports the idea of interfacial effect induced high-Tc superconductivity.
147 - D. Hsieh , Y. Xia , L. Wray 2008
Like high Tc cuprates, the newly discovered iron based superconductors lie in close proximity to a magnetically ordered parent phase. However, while the magnetic order in parent cuprates is known to derive from a spin-spin local superexchange interac tion, a plethora of experiments including neutron scattering have so far been unable to conclusively resolve whether a local moment Heisenberg description applies in parent iron based compounds, or whether magnetism arises from a collective SDW order instability. These two alternatives can in principle be distinguished by measuring the low energy momentum-resolved bulk-representative electronic structure of the magnetically ordered phase. Using a combination of polarization dependent ARPES and STM, we have isolated the complete low-lying bulk representative electronic structure of magnetic SrFe2As2 with d-orbital symmetry specificity for the first time. Our results show that while multiple bands with different iron d-orbital character indeed contribute to charge transport, only one pair of bands with opposite mirror symmetries microscopically exhibit an itinerant SDW instability with energy scales on the order of 50 meV. The orbital resolved band topology below T_SDW point uniquely to a nesting driven band hybridization mechanism of the observed antiferromagnetism in the iron pnictides, and is consistent with an unusual anisotropic nodal-density-wave state. In addition, these results place strong constraints on many theories of pnictide superconductivity that require a strict local moment magnetism starting point.
Using realistic multi-orbital tight-binding Hamiltonians and the T-matrix formalism, we explore the effects of a non-magnetic impurity on the local density of states in Fe-based compounds. We show that scanning tunneling spectroscopy (STS) has very s pecific anisotropic signatures that track the evolution of orbital splitting (OS) and antiferromagnetic gaps. Both anisotropies exhibit two patterns that split in energy with decreasing temperature, but for OS these two patterns map onto each other under 90 degree rotation. STS experiments that observe these signatures should expose the underlying magnetic and orbital order as a function of temperature across various phase transitions.
Using both two orbital and five orbital models, we investigate the quasiparticle interference (QPI) patterns in the superconducting (SC) state of iron-based superconductors. We compare the results for nonmagnetic and magnetic impurities in sign-chang ed s-wave $cos(k_x)cdotcos(k_y)$ and sign-unchanged $|cos(k_x)cdotcos(k_y)|$ SC states. While the patterns strongly depend on the chosen band structures, the sensitivity of peaks around $(pmpi,0)$ and $(0,pmpi)$ wavevectors on magnetic or non-magnetic impurity, and sign change or sign unchanged SC orders is common in two models. Our results strongly suggest that QPI may provide direct information of band structures and evidence of the pairing symmetry in the SC states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا