ﻻ يوجد ملخص باللغة العربية
We report the results of the statistical analysis of planetary signals discovered in MOA-II microlensing survey alert system events from 2007 to 2012. We determine the survey sensitivity as a function of planet-star mass ratio, $q$, and projected planet-star separation, $s$, in Einstein radius units. We find that the mass ratio function is not a single power-law, but has a change in slope at $q sim 10^{-4}$, corresponding to $sim 20 M_{oplus}$ for the median host star mass of $sim 0.6 M_{odot}$. We find significant planetary signals in 23 of the 1474 alert events that are well characterized by the MOA-II survey data alone. Data from other groups are used only to characterize planetary signals that have been identified in the MOA data alone. The distribution of mass ratios and separations of the planets found in our sample are well fit by a broken power-law model of the form $dN_{rm pl}/(d{rm log} q d{rm log} s) = A (q/q_{rm br})^n s^m , {rm dex}^{-2}$ for $q > q_{rm br}$ and $dN_{rm pl}/(d{rm log} q d{rm log} s) = A (q/q_{rm br})^p s^m , {rm dex}^{-2}$ for $q < q_{rm br}$, where $q_{rm br}$ is the mass ratio of the break. We also combine this analysis with the previous analyses of Gould et al. and Cassan et al., bringing the total sample to 30 planets. This combined analysis yields $A = 0.61^{+0.21}_{-0.16}$, $n =-0.93pm 0.13$, $m = 0.49_{-0.49}^{+0.47}$ and $p = 0.6^{+0.5}_{-0.4}$ for $q_{rm br}equiv 1.7times 10^{-4}$. The unbroken power law model is disfavored with a $p$-value of 0.0022, which corresponds to a Bayes factor of 27 favoring the broken power-law model. These results imply that cold Neptunes are likely to be the most common type of planets beyond the snow line.
Analysis of new precision radial velocity (RV) measurements from the Lick Automated Planet Finder (APF) and Keck HIRES have yielded the discovery of three new exoplanet candidates orbiting two nearby K dwarfs not previously reported to have companion
Stellar heating causes atmospheres of close-in exoplanets to expand and escape. These extended atmospheres are difficult to observe because their main spectral signature - neutral hydrogen at ultraviolet wavelengths - is strongly absorbed by interste
We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The ana
GJ 436b is a warm-- approximately 800 K--extrasolar planet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations h
The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of known young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets with w