ﻻ يوجد ملخص باللغة العربية
Projection error limits the use of vector magnetograms of active regions (ARs) far from disk center. In this Letter, for ARs observed up to 60o from disk center, we demonstrate a method of measuring and reducing the projection error in the magnitude of any whole-AR parameter derived from a vector magnetogram that has been deprojected to disk center. The method assumes that the center-to-limb curve of the average of the parameters absolute values measured from the disk passage of a large number of ARs and normalized to each ARs absolute value of the parameter at central meridian, gives the average fractional projection error at each radial distance from disk center. To demonstrate the method, we use a large set of large-flux ARs and apply the method to a whole-AR parameter that is among the simplest to measure: whole-AR magnetic flux. We measure 30,845 SDO/HMI vector magnetograms covering the disk passage of 272 large-flux ARs, each having whole-AR flux >1022 Mx. We obtain the center-to-limb radial-distance run of the average projection error in measured whole-AR flux from a Chebyshev fit to the radial-distance plot of the 30,845 normalized measured values. The average projection error in the measured whole-AR flux of an AR at a given radial distance is removed by multiplying the measured flux by the correction factor given by the fit. The correction is important for both the study of evolution of ARs and for improving the accuracy of forecasting an ARs major flare/CME productivity.
This paper investigates a quiescent (non-flaring) active region observed on July 13, 2010 in EUV, SXR, and HXRs to search for a hot component that is speculated to be a key signature of coronal heating. We use a combination of RHESSI imaging and long
The presence of elongations in active region (AR) polarities, called magnetic tongues, are mostly visible during their emergence phase. AR tilts have been measured thoroughly using long-term white-light (WL) databases, sometimes combined with magneti
The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Amperes law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this
Stellar winds govern the angular momentum evolution of solar-like stars throughout their main-sequence lifetime. The efficiency of this process depends on the geometry of the stars magnetic field. There has been a rapid increase recently in the numbe
Both coronal holes and active regions are source regions of the solar wind. The distribution of these coronal structures across both space and time is well known, but it is unclear how much each source contributes to the solar wind. In this study we