ﻻ يوجد ملخص باللغة العربية
We show how to construct highly symmetric algorithms for matrix multiplication. In particular, we consider algorithms which decompose the matrix multiplication tensor into a sum of rank-1 tensors, where the decomposition itself consists of orbits under some finite group action. We show how to use the representation theory of the corresponding group to derive simple constraints on the decomposition, which we solve by hand for n=2,3,4,5, recovering Strassens algorithm (in a particularly symmetric form) and new algorithms for larger n. While these new algorithms do not improve the known upper bounds on tensor rank or the matrix multiplication exponent, they are beautiful in their own right, and we point out modifications of this idea that could plausibly lead to further improvements. Our constructions also suggest further patterns that could be mined for new algorithms, including a tantalizing connection with lattices. In particular, using lattices we give the most transparent proof to date of Strassens algorithm; the same proof works for all n, to yield a decomposition with $n^3 - n + 1$ terms.
We develop a notion of {em inner rank} as a tool for obtaining lower bounds on the rank of matrix multiplication tensors. We use it to give a short proof that the border rank (and therefore rank) of the tensor associated with $ntimes n$ matrix multip
While algebrisation constitutes a powerful technique in the design and analysis of centralised algorithms, to date there have been hardly any applications of algebraic techniques in the context of distributed graph algorithms. This work is a case stu
We propose COSMA: a parallel matrix-matrix multiplication algorithm that is near communication-optimal for all combinations of matrix dimensions, processor counts, and memory sizes. The key idea behind COSMA is to derive an optimal (up to a factor of
Motivated by geometric problems in signal processing, computer vision, and structural biology, we study a class of orbit recovery problems where we observe very noisy copies of an unknown signal, each acted upon by a random element of some group (suc
This PhD thesis summarizes research works on the design of exact algorithms that provide a worst-case (time or space) guarantee for NP-hard scheduling problems. Both theoretical and practical aspects are considered with three main results reported. T