ﻻ يوجد ملخص باللغة العربية
We propose COSMA: a parallel matrix-matrix multiplication algorithm that is near communication-optimal for all combinations of matrix dimensions, processor counts, and memory sizes. The key idea behind COSMA is to derive an optimal (up to a factor of 0.03% for 10MB of fast memory) sequential schedule and then parallelize it, preserving I/O optimality. To achieve this, we use the red-blue pebble game to precisely model MMM dependencies and derive a constructive and tight sequential and parallel I/O lower bound proofs. Compared to 2D or 3D algorithms, which fix processor decomposition upfront and then map it to the matrix dimensions, it reduces communication volume by up to $sqrt{3}$ times. COSMA outperforms the established ScaLAPACK, CARMA, and CTF algorithms in all scenarios up to 12.8x (2.2x on average), achieving up to 88% of Piz Daints peak performance. Our work does not require any hand tuning and is maintained as an open source implementation.
Matrix factorizations are among the most important building blocks of scientific computing. State-of-the-art libraries, however, are not communication-optimal, underutilizing current parallel architectures. We present novel algorithms for Cholesky an
We show how to construct highly symmetric algorithms for matrix multiplication. In particular, we consider algorithms which decompose the matrix multiplication tensor into a sum of rank-1 tensors, where the decomposition itself consists of orbits und
We develop a notion of {em inner rank} as a tool for obtaining lower bounds on the rank of matrix multiplication tensors. We use it to give a short proof that the border rank (and therefore rank) of the tensor associated with $ntimes n$ matrix multip
Generalized Sparse Matrix-Matrix Multiplication (SpGEMM) is a ubiquitous task in various engineering and scientific applications. However, inner product based SpGENN introduces redundant input fetches for mismatched nonzero operands, while outer prod
In this paper, we investigate the randomized algorithms for block matrix multiplication from random sampling perspective. Based on the A-optimal design criterion, the optimal sampling probabilities and sampling block sizes are obtained. To improve th