ﻻ يوجد ملخص باللغة العربية
Multi-wing chaotic attractors are highly complex nonlinear dynamical systems with higher number of index-2 equilibrium points. Due to the presence of several equilibrium points, randomness and hence the complexity of the state time series for these multi-wing chaotic systems is much higher than that of the conventional double-wing chaotic attractors. A real-coded Genetic Algorithm (GA) based global optimization framework has been adopted in this paper as a common template for designing optimum Proportional-Integral-Derivative (PID) controllers in order to control the state trajectories of four different multi-wing chaotic systems among the Lorenz family viz. Lu system, Chen system, Rucklidge (or Shimizu Morioka) system and Sprott-1 system. Robustness of the control scheme for different initial conditions of the multi-wing chaotic systems has also been shown.
This article briefly introduces the generalized Lorenz systems family, which includes the classical Lorenz system and the relatively new Chen system as special cases, with infinitely many related but not topologically equivalent chaotic systems in between.
A generalization of the Lorenz equations is proposed where the variables take values in a Lie algebra. The finite dimensionality of the representation encodes the quantum fluctuations, while the non-linear nature of the equations can describe chaotic
We have developed a method for complementing an arbitrary classical dynamical system to a quantum system using the Lorenz and Rossler systems as examples. The Schrodinger equation for the corresponding quantum statistical ensemble is described in ter
We investigate the parametric evolution of riddled basins related to synchronization of chaos in two coupled piecewise-linear Lorenz maps. Riddling means that the basin of the synchronized attractor is shown to be riddled with holes belonging to anot
In this article we construct the parameter region where the existence of a homoclinic orbit to a zero equilibrium state of saddle type in the Lorenz-like system will be analytically proved in the case of a nonnegative saddle value. Then, for a qualit