ﻻ يوجد ملخص باللغة العربية
This article briefly introduces the generalized Lorenz systems family, which includes the classical Lorenz system and the relatively new Chen system as special cases, with infinitely many related but not topologically equivalent chaotic systems in between.
A three-component dynamic system with influence of pumping and nonlinear dissipation describing a quantum cavity electrodynamic device is studied. Different dynamical regimes are investigated in terms of divergent trajectories approaches and fractal
This paper provides a unified method for analyzing chaos synchronization of the generalized Lorenz systems. The considered synchronization scheme consists of identical master and slave generalized Lorenz systems coupled by linear state error variable
A generalization of the Lorenz equations is proposed where the variables take values in a Lie algebra. The finite dimensionality of the representation encodes the quantum fluctuations, while the non-linear nature of the equations can describe chaotic
Multi-wing chaotic attractors are highly complex nonlinear dynamical systems with higher number of index-2 equilibrium points. Due to the presence of several equilibrium points, randomness and hence the complexity of the state time series for these m
This work presents the continuation of the recent article The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension, published in the Nonlinear Dynamics journal. In this work, in comparison with the results for classical re