ﻻ يوجد ملخص باللغة العربية
Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of $simeq 4.5,$AA, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges particularly in regions with high gas temperatures and ionization fractions. If $gtrsim 10%$ of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.
The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and p
The role of quantum tunneling effect in the electron accretion current onto a negatively charged grain immersed in isotropic plasma is analyzed, within the quasiclassic approximation, for different plasma electron distribution functions, plasma param
A two dimensional magnetic particle in the presence of an external magnetic field is studied. Equilibrium thermodynamical properties are derived by evaluating analytically the partition function. When the external field is applied perpendicular to th
This chapter is intended as a pedagogical introduction to the dynamics of optically levitated nanoparticles with a focus on the study of single particle thermodynamics. Much of the work studying thermodynamics with nano- and micro-particles has taken
We report on self-assembled iron oxide nanoparticle films on silicon substrates. In addition to homogeneously assembled layers, we fabricated patterned trenches of 40-1000 nm width using electron beam lithography for the investigation of assisted sel