ﻻ يوجد ملخص باللغة العربية
This chapter is intended as a pedagogical introduction to the dynamics of optically levitated nanoparticles with a focus on the study of single particle thermodynamics. Much of the work studying thermodynamics with nano- and micro-particles has taken place in liquid, and this chapter will avoid reviewing this impressive body of work, focussing instead on studies of thermodynamics with nanoparticles levitated in a gas. For a recent literature review we refer the reader to Gieseler & Millen Entropy 20, 326 (2018). The authors will discuss extensions into the quantum regime where relevant throughout the chapter.
We demonstrate a new mechanical transduction platform for individual spin qubits. In our approach, single micro-magnets are trapped using a type-II superconductor in proximity of spin qubits, enabling direct magnetic coupling between the two systems.
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of matter. A nonlinear coupling offers access to rich new physics, in both the quantum and classical regimes. We investigate a dynamic, as opposed to the
We theoretically explore a quantum memory using a single nanoparticle levitated in an optical dipole trap and subjected to feedback cooling. This protocol is realized by storing and retrieving a single photon quantum state from a mechanical mode in l
We describe the construction and characterisation of a nano-oscillator formed by a Paul trap. The frequency and temperature stability of the nano-oscillator was measured over several days allowing us to identify the major sources of trap and environm
Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of partic