ﻻ يوجد ملخص باللغة العربية
We present protocols for the generation of high-dimensional entangled states of anharmonic oscillators by means of coherent manipulation of light-matter systems in the ultrastrong coupling regime. Our protocols consider a pair of ultrastrong coupled qubit-cavity systems, each coupled to an ancilla qubit, and combine classical pulses plus the selection rules imposed by the parity symmetry. We study the robustness of the entangling protocols under dissipative effects. This proposal may have applications within state-of-art circuit quantum electrodynamics.
We implement several quantum algorithms in real five-qubit superconducting quantum processor IBMqx4 to perform quantum computation of the dynamics of spin-1/2 particles interacting directly and indirectly through the boson field. Particularly, we foc
Understanding the interaction between light and matter is very relevant for fundamental studies of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi model captures the physics of a single atom interacting with
We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep stro
In parametric systems, squeezed states of radiation can be generated via extra work done by external sources. This eventually increases the entropy of the system despite the fact that squeezing is reversible. We investigate the entropy increase due t
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired a