ﻻ يوجد ملخص باللغة العربية
V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the theta-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, N_f/N_c, and theta, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.
We study the effects of the CP-breaking topological $theta$-term in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f$ degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the
We study the physics with finite nuclear density in the framework of AdS/QCD with holographic baryon field included. Based on a mean field type approach, we introduce the nucleon density as a bi-fermion condensate of the lowest mode of the baryon fie
We study the nuclear symmetry energy of dense matter using holographic QCD. To this end, we consider two flavor branes with equal quark masses in a D4/D6/D6 model. We find that at all densities the symmetry energy monotonically increases. At small de
In the framework of a holographic QCD approach we study an influence of matters on the deconfinement temperature, $T_c$. We first consider quark flavor number ($N_f$) dependence of $T_c$. We observe that $T_c$ decreases with $N_f$, which is consisten
We establish a holographic bottom-up model which covers both the baryonic and quark matter phases in cold and dense QCD. This is obtained by including the baryons using simple approximation schemes in the V-QCD model, which also includes the backreac