ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry energy of dense matter in holographic QCD

197   0   0.0 ( 0 )
 نشر من قبل Ik Jae Shin
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the nuclear symmetry energy of dense matter using holographic QCD. To this end, we consider two flavor branes with equal quark masses in a D4/D6/D6 model. We find that at all densities the symmetry energy monotonically increases. At small densities, it exhibits a power law behavior with the density, $E_{rm sym} sim rho^{1/2}$.



قيم البحث

اقرأ أيضاً

We study the physics with finite nuclear density in the framework of AdS/QCD with holographic baryon field included. Based on a mean field type approach, we introduce the nucleon density as a bi-fermion condensate of the lowest mode of the baryon fie ld and calculate the density dependence of the chiral condensate and the nucleon mass. We observe that the chiral condensate as well as the mass of nucleon decrease with increasing nuclear density. We also consider the mass splitting of charged vector mesons in iso-spin asymmetric nuclear matter.
We establish a holographic bottom-up model which covers both the baryonic and quark matter phases in cold and dense QCD. This is obtained by including the baryons using simple approximation schemes in the V-QCD model, which also includes the backreac tion of the quark matter to the dynamics of pure Yang-Mills. We examine two approaches for homogeneous baryon matter: baryons as a thin layer of noninteracting matter in the holographic bulk, and baryons with a homogeneous bulk gauge field. We find that the second approach exhibits phenomenologically reasonable features. At zero temperature, the vacuum, baryon, and quark matter phases are separated by strongly first order transitions as the chemical potential varies. The equation of state in the baryonic phase is found to be stiff, i.e., the speed of sound clearly exceeds the value $c_s^2=1/3$ of conformal plasmas at high baryon densities.
116 - Yunseok Seo , Sang-Jin Sin 2012
We study nuclear symmetry energy of dense matter using holographic QCD. We calculate it in a various holographic QCD models and show that the scaling index of the symmetry energy in dense medium is almost invariant under the smooth deformation of the metric as well as the embedding shape of the probe brane. We find that the scaling index depends only on the dimensionality of the branes and space-time. Therefore the scaling index of the symmetry energy characterizes the universality classes of holographic QCD models. We suggest that the scaling index might be also related to the non-fermi liquid behavior of the interacting nucleons.
In the framework of a holographic QCD approach we study an influence of matters on the deconfinement temperature, $T_c$. We first consider quark flavor number ($N_f$) dependence of $T_c$. We observe that $T_c$ decreases with $N_f$, which is consisten t with a lattice QCD result. We also delve into how the quark number density $rho_q$ affects the value of $T_c$. We find that $T_c$ drops with increasing $rho_q$. In both cases, we confirm that the contributions from quarks are suppressed by $1/N_c$, as it should be, compared to the ones from a gravitational action (pure Yang-Mills).
The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal dynamics with its chiral limit protected by the superconformal algebraic structure which governs its transverse dynamics. The scale in the longitudinal ligh t-front Hamiltonian determines the confinement strength in this direction: It is also responsible for most of the light meson ground state mass consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the breaking of chiral symmetry are found to be different manifestations of the same underlying dynamics like in t Hooft large $N_C$ QCD(1 + 1) model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا