ترغب بنشر مسار تعليمي؟ اضغط هنا

Implementing Ideas for Improving Software Citation and Credit

135   0   0.0 ( 0 )
 نشر من قبل Alice Allen
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Improving software citation and credit continues to be a topic of interest across and within many disciplines, with numerous efforts underway. In this Birds of a Feather (BoF) session, we started with a list of actionable ideas from last years BoF and other similar efforts and worked alone or in small groups to begin implementing them. Work was captured in a common Google document; the session organizers will disseminate or otherwise put this information to use in or for the community in collaboration with those who contributed.



قيم البحث

اقرأ أيضاً

The past year has seen movement on several fronts for improving software citation, including the Center for Open Sciences Transparency and Openness Promotion (TOP) Guidelines, the Software Publishing Special Interest Group that was started at January s AAS meeting in Seattle at the request of that organizations Working Group on Astronomical Software, a Sloan-sponsored meeting at GitHub in San Francisco to begin work on a cohesive research software citation-enabling platform, the work of Force11 to transform and improve research communication, and WSSSPEs ongoing efforts that include software publication, citation, credit, and sustainability. Brief reports on these efforts were shared at the BoF, after which participants discussed ideas for improving software citation, generating a list of recommendations to the community of software authors, journal publishers, ADS, and research authors. The discussion, recommendations, and feedback will help form recommendations for software citation to those publishers represented in the Software Publishing Special Interest Group and the broader community.
The main output of the FORCE11 Software Citation working group (https://www.force11.org/group/software-citation-working-group) was a paper on software citation principles (https://doi.org/10.7717/peerj-cs.86) published in September 2016. This paper l aid out a set of six high-level principles for software citation (importance, credit and attribution, unique identification, persistence, accessibility, and specificity) and discussed how they could be used to implement software citation in the scholarly community. In a series of talks and other activities, we have promoted software citation using these increasingly accepted principles. At the time the initial paper was published, we also provided guidance and examples on how to make software citable, though we now realize there are unresolved problems with that guidance. The purpose of this document is to provide an explanation of current issues impacting scholarly attribution of research software, organize updated implementation guidance, and identify where best practices and solutions are still needed.
We have created a new semantic tool called AstroConcepts, providing definitions of astronomical concepts present on Web pages. This tool is a Google Chrome plug-in that interrogates the Etymological Dictionary of Astronomy and Astrophysics, developed at Paris Observatory. Thanks to this tool, if one selects an astronomical concept on a web page, a pop-up window will display the definition of the available English or French terms. Another expected use of this facility could be its implementation in Virtual Observatory services.
We analyze the role of first (leading) author gender on the number of citations that a paper receives, on the publishing frequency and on the self-citing tendency. We consider a complete sample of over 200,000 publications from 1950 to 2015 from five major astronomy journals. We determine the gender of the first author for over 70% of all publications. The fraction of papers which have a female first author has increased from less than 5% in the 1960s to about 25% today. We find that the increase of the fraction of papers authored by females is slowest in the most prestigious journals such as Science and Nature. Furthermore, female authors write 19$pm$7% fewer papers in seven years following their first paper than their male colleagues. At all times papers with male first authors receive more citations than papers with female first authors. This difference has been decreasing with time and amounts to $sim$6% measured over the last 30 years. To account for the fact that the properties of female and male first author papers differ intrinsically, we use a random forest algorithm to control for the non-gender specific properties of these papers which include seniority of the first author, number of references, total number of authors, year of publication, publication journal, field of study and region of the first authors institution. We show that papers authored by females receive 10.4$pm$0.9% fewer citations than what would be expected if the papers with the same non-gender specific properties were written by the male authors. Finally, we also find that female authors in our sample tend to self-cite more, but that this effect disappears when controlled for non-gender specific variables.
In this whitepaper we advocate that the Planetary Science (PS) community build a discipline-specific digital library, in collaboration with the existing astronomy digital library, ADS. We suggest that the PS data archives increase their level of cura tion to allow for direct linking between the archival data and the derived journal articles. And we suggest that a new component of the PS information infrastructure be created to collate and curate information on features and objects in our solar system, beginning with the USGS/IAU Gazetteer of Planetary Nomenclature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا