ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling Synergy: Improving the Information Infrastructure for Planetary Science

87   0   0.0 ( 0 )
 نشر من قبل Alberto Accomazzi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this whitepaper we advocate that the Planetary Science (PS) community build a discipline-specific digital library, in collaboration with the existing astronomy digital library, ADS. We suggest that the PS data archives increase their level of curation to allow for direct linking between the archival data and the derived journal articles. And we suggest that a new component of the PS information infrastructure be created to collate and curate information on features and objects in our solar system, beginning with the USGS/IAU Gazetteer of Planetary Nomenclature.

قيم البحث

اقرأ أيضاً

Conceptually exoplanet research has one foot in the discipline of Astrophysics and the other foot in Planetary Science. Research strategies for exoplanets will require efficient access to data and information from both realms. Astrophysics has a soph isticated, well integrated, distributed information system with archives and data centers which are interlinked with the technical literature via the Astrophysics Data System (ADS). The information system for Planetary Science does not have a central component linking the literature with the observational and theoretical data. Here we propose that the Committee on an Exoplanet Science Strategy recommend that this linkage be built, with the ADS playing the role in Planetary Science which it already plays in Astrophysics. This will require additional resources for the ADS, and the Planetary Data System (PDS), as well as other international collaborators
The field of exoplanetary science has emerged over the past two decades, rising up alongside traditional solar system planetary science. Both fields focus on understanding the processes which form and sculpt planets through time, yet there has been l ess scientific exchange between the two communities than is ideal. This white paper explores some of the institutional and cultural barriers which impede cross-discipline collaborations and suggests solutions that would foster greater collaboration. Some solutions require structural or policy changes within NASA itself, while others are directed towards other institutions, including academic publishers, that can also facilitate greater interdisciplinarity.
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESAs Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution.
This white paper is the result of the Tri-Agency Working Group (TAG) appointed to develop synergies between missions and is intended to clarify what LSST observations are needed in order to maximally enhance the combined science output of LSST and Eu clid. To facilitate LSST planning we provide a range of possible LSST surveys with clear metrics based on the improvement in the Dark Energy figure of merit (FOM). To provide a quantifiable metric we present five survey options using only between 0.3 and 3.8% of the LSST 10 year survey. We also provide information so that the LSST DDF cadence can possibly be matched to those of emph{Euclid} in common deep fields, SXDS, COSMOS, CDFS, and a proposed new LSST deep field (near the Akari Deep Field South). Co-coordination of observations from the Large Synoptic Survey Telescope (LSST) and Euclid will lead to a significant number of synergies. The combination of optical multi-band imaging from LSST with high resolution optical and near-infrared photometry and spectroscopy from emph{Euclid} will not only improve constraints on Dark Energy, but provide a wealth of science on the Milky Way, local group, local large scale structure, and even on first galaxies during the epoch of reionization. A detailed paper has been published on the Dark Energy science case (Rhodes et al.) by a joint LSST/Euclid working group as well as a white paper describing LSST/Euclid/WFIRST synergies (Jain et al.), and we will briefly describe other science cases here. A companion white paper argues the general science case for an extension of the LSST footprint to the north at airmass < 1.8, and we support the white papers for southern extensions of the LSST survey.
The world is changing fast, and so is the space sector. Planning for large scientific experiments two decades ahead may no longer be the most sensible approach. I develop the argument that large science experiments are becoming comparable to terrestr ial civil infrastructures in terms of cost. As a result, these should incorporate plans for a return on investment (or impact, not necessarily economic), require a different approach for inter-division coordination within the European Space Agency(ESA), and a broader participation of all society stakeholders (civil society representatives, and the broader public). Defining which experiments will be relevant two decades ahead adds rigidity and quenches creativity to the development of cutting edge science and technology. This is likely to discourage both senior and earlier career professionals into supporting such long-term (and often precarious) plans. A more sensible strategy would be increasing the rate of smaller well understood experiments, engage more society sectors in the development of a truly space-bound infrastructure, and formulate a strategy more in tune with the challenges faced by our society and planet. We argue that such strategy would lead to equally large -- even larger -- scale experiments in the same time-scale, while providing economic returns and a common sense of purpose. A basic but aggressive road map is outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا