ترغب بنشر مسار تعليمي؟ اضغط هنا

Microfluidization of graphite and formulation of graphene-based conductive inks

73   0   0.0 ( 0 )
 نشر من قبل Andrea Ferrari
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the exfoliation of graphite in aqueous solutions under high shear rate [$sim10^8s^{-1}$] turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks. The sheet resistance of blade coated films is below$sim2Omega/square$. This is a simple and scalable production route for graphene-based conductive inks for large area printing in flexible electronics.

قيم البحث

اقرأ أيضاً

The new paradigm of heterostructures based on two-dimensional (2D) atomic crystals has already led to the observation of exciting physical phenomena and creation of novel devices. The possibility of combining layers of different 2D materials in one s tack allows unprecedented control over the electronic and optical properties of the resulting material. Still, the current method of mechanical transfer of individual 2D crystals, though allowing exceptional control over the quality of such structures and interfaces, is not scalable. Here we show that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in the device fabrication.
We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied - as deposited and compressed - in order to determine the physical parameters affecti ng the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 micrometers. The thermal conductivity of graphene laminate was found to be in the range from 40 W/mK to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. The possibility of up to 600X enhancement of the thermal conductivity of plastic materials by coating them with the thin graphene laminate films has important practical implications.
The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-di mensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magnetoexcitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
The authors proposed a simple model for the lattice thermal conductivity of graphene in the framework of Klemens approximation. The Gruneisen parameters were introduced separately for the longitudinal and transverse phonon branches through averaging over phonon modes obtained from the first-principles. The calculations show that Umklapp-limited thermal conductivity of graphene grows with the increasing linear dimensions of graphene flakes and can exceed that of the basal planes of bulk graphite when the flake size is on the order of few micrometers. The obtained results are in agreement with experimental data and reflect the two-dimensional nature of phonon transport in graphene.
We report the results of an experimental study of thermal and magnetic properties of nanostructured ferrimagnetic iron oxide composites with graphene and graphite fillers synthesized via the current activated pressure assisted densification. The ther mal conductivity was measured using the laser-flash and transient plane source techniques. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of x2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization. The microscopy and spectroscopic characterization reveal that sp2 carbon fillers preserve their crystal structure and morphology during the composite processing. The strong increase in the thermal conductivity was attributed to the excellent phonon heat conduction properties of graphene and graphite. The results are important for energy and electronic applications of the nanostructured permanent magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا