ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper critical magnetic field of $Ln$O$_{0.5}$F$_{0.5}$BiS$_2$ ($Ln$ = La, Nd) superconductors at ambient and high pressure

70   0   0.0 ( 0 )
 نشر من قبل Yuankan Fang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The upper critical field $H_{c2}$ of polycrystalline samples of $Ln$O$_{0.5}$F$_{0.5}$BiS$_{2}$ ($Ln$ = La, Nd) at ambient pressure (tetragonal structure) and high pressure (HP) (monoclinic structure) have been investigated via electrical resistivity measurements at various magnetic fields up to 8.5 T. The $H_{c2}$($T$) curves for all the samples show an uncharacteristic concave upward curvature at temperatures below $T_c$, which cannot be described by the conventional one-band Werthamer-Helfand-Hohenberg theory. For the LaO$_{0.5}$F$_{0.5}$BiS$_{2}$ sample under HP, as temperature is decreased, the upper critical field $H_{onset}$, estimated from the onset of the superconducting transitions, increases slowly between 4.9 and 5.8 T compared with the slope of $H_{onset}$($T$) below 4.9 T and above 5.8 T. This anomalous behavior reveals a remarkable similarity in superconductivity between LaO$_{0.5}$F$_{0.5}$BiS$_{2}$ samples measured under HP and synthesized under HP, although the crystal structures of the two samples were reported to be different. The experimental results support the idea that local atomic environment, which can be tuned by applying external pressure and can be quenched to ambient pressure via high temperature-pressure annealing, is possibly more essential to the enhancement of $T_c$ for BiS$_2$-based superconductors than the structural phase transition. On the other hand, such anomalous behavior is very subtle in the case of NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ under HP, suggesting that the anisotropy of the upper critical field in the $ab$-plane and the possible lattice deformation induced by external pressure is weak. This explains why the pressure-induced enhancement of $T_c$ for NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ is not as large as that for LaO$_{0.5}$F$_{0.5}$BiS$_{2}$.



قيم البحث

اقرأ أيضاً

A large number of compounds which contain BiS$_{2}$ layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS$_{2}$-based compounds which provide new opportunities for exploring the natu re of superconductivity. Important to the study of BiS$_{2}$-based superconductors is the relation between structure and superconductivity. By modifying either the superconducting BiS$_2$ layers or the blocking layers in these layered compounds, one can effectively tune the lattice parameters, local atomic environment, electronic structure, and other physical properties of these materials. In this article, we will review some of the recent progress on research of the effects of chemical substitution in BiS$_{2}$-based compounds, with special attention given to the compounds in the $Ln$OBiS$_{2}$ ($Ln$ = La-Nd) system. Strategies which are reported to be essential in optimizing superconductivity of these materials will also be discussed.
Measurements of electrical resistivity were performed between 3 and 300 K at various pressures up to 2.8 GPa on the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln = Pr, Nd). At lower pressures, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 exhibit superconductivi ty with critical temperatures Tc of 3.5 and3.9 K, respectively. As pressure is increased, both compounds undergo a transition at a pressure Pt from a low Tc superconducting phase to a high Tc superconducting phase in which Tc reaches maximum values of 7.6 and 6.4 K for PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2, respectively. The pressure-induced transition is characterized by a rapid increase in Tc within a small range in pressure of ~0.3 GPa for both compounds. In the normal state of PrO0.5F0.5BiS2, the transition pressure Pt correlates with the pressure where the suppression of semiconducting behaviour saturates. In the normal state of NdO0.5F0.5BiS2, Pt is coincident with a semiconductor-metal transition. This behaviour is similar to the results recently reported for the LnO0.5F0.5BiS2 (Ln = La, Ce) compounds. We observe that Pt and the size of the jump in Tc between the two superconducting phases both scale with the lanthanide element in LnO0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd).
239 - R. H. Liu , G. Wu , H. Chen 2008
We prepared the samples K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ (Ln=Sm, Nd and La) with ThCr$_2$Si$_2$-type structure. These samples were characterized by X-ray diffraction, resistivity, susceptibility and thermoelectric power (TEP). Substitution of Ln (Ln=La, Nd and Sm) for K in K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ system raises the superconducting transition temperature to 34-36 K. The TEP measurements indicate that the TEP of K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ is positive, being similar to the case of the Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ system with p-type carrier. In the K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ system, the superconducting $KFe_2As_2$ with $T_csim 3$ K is the parent compound, and no structural and spin-density wave instabilities exist in this system.
112 - I. Jeon , D. Yazici , B. D. White 2014
We present the effect of yttrium substitution on superconductivity in the La$_{1-textit{x}}$Y$_{textit{x}}$O$_{0.5}$F$_{0.5}$BiS$_{2}$ system. Polycrystalline samples with nominal Y concentrations up to 40% were synthesized and characterized via elec trical resistivity, magnetic susceptibility, and specific heat measurements. Y substitution reduces the lattice parameter textit{a} and unit cell volume textit{V}, and a correlation between the lattice parameter textit{c}, the La-O-La bond angle, and the superconducting critical temperature $T_c$ is observed. The chemical pressure induced by Y substitution for La produces neither the high-$T_c$ superconducting phase nor the structural phase transition seen in LaO$_{0.5}$F$_{0.5}$BiS$_{2}$ under externally applied pressure.
Electrical resistivity measurements as a function of temperature between 1 K and 300 K were performed at various pressures up to 3 GPa on the superconducting layered compounds Ln(O0.5F0.5)BiS2 (Ln = La, Ce). At atmospheric pressure, La(O0.5F0.5)BiS2 and Ce(O0.5F0.5)BiS2 have superconducting critical temperatures, Tc, of 3.3 K and 2.3 K, respectively. For both compounds, the superconducting critical temperature Tc initially increases, reaches a maximum value of 10.1 K for La(O0.5F0.5)BiS2 and 6.7 K for CeO(0.5F0.5)BiS2, and then gradually decreases with increasing pressure. Both samples also exhibit transient behavior in the region between the lower Tc phase near atmospheric pressure and the higher Tc phase. This region is characterized by a broadening of the superconducting transition, in which Tc and the transition width, delta Tc, are reversible with increasing and decreasing pressure. There is also an appreciable pressure-induced and hysteretic suppression of semiconducting behavior up to the pressure at which the maximum value of Tc is found. At pressures above the value at which the maximum in Tc occurs, there is a gradual decrease of Tc and further suppression of the semiconducting behavior with pressure, both of which are reversible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا