ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport properties and superconductivity in K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ (Ln=Sm, Nd and La) system

239   0   0.0 ( 0 )
 نشر من قبل X. H. Chen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prepared the samples K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ (Ln=Sm, Nd and La) with ThCr$_2$Si$_2$-type structure. These samples were characterized by X-ray diffraction, resistivity, susceptibility and thermoelectric power (TEP). Substitution of Ln (Ln=La, Nd and Sm) for K in K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ system raises the superconducting transition temperature to 34-36 K. The TEP measurements indicate that the TEP of K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ is positive, being similar to the case of the Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ system with p-type carrier. In the K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ system, the superconducting $KFe_2As_2$ with $T_csim 3$ K is the parent compound, and no structural and spin-density wave instabilities exist in this system.



قيم البحث

اقرأ أيضاً

121 - S.-F. Wu , P. Richard , H. Ding 2016
Using polarization-resolved electronic Raman scattering we study under-doped, optimally-doped and over-doped Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ samples in the normal and superconducting states. We show that low-energy nematic fluctuations are universal fo r all studied doping range. In the superconducting state, we observe two distinct superconducting pair breaking peaks corresponding to one large and one small superconducting gaps. In addition, we detect a collective mode below the superconducting transition in the B$_{2g}$ channel and determine the evolution of its binding energy with doping. Possible scenarios are proposed to explain the origin of the in-gap collective mode. In the superconducting state of the under-doped regime, we detect a re-entrance transition below which the spectral background changes and the collective mode vanishes.
265 - N. Ni , S. L. Budko , A. Kreyssig 2008
Single crystals of BaFe$_2$As$_2$ and (Ba$_{0.55}$K$_{0.45}$)Fe$_2$As$_2$ have been grown out of excess Sn with 1% or less incorporation of solvent. The crystals are exceptionally micaceous, are easily exfoliated and can have dimensions as large as 3 x 3 x 0.2 mm$^3$. The BaFe$_2$As$_2$ single crystals manifest a structural phase transition from a high temperature tetragonal phase to a low temperature orthorhombic phase near 85 K and do not show any sign of superconductivity down to 1.8 K. This transition can be detected in the electrical resistivity, Hall resistivity, specific heat and the anisotropic magnetic susceptibility. In the (Ba$_{0.55}$K$_{0.45}$)Fe$_2$As$_2$ single crystals this transition is suppressed and instead superconductivity occurs with a transition temperature near 30 K. Whereas the superconducting transition is easily detected in resistivity and magnetization measurements, the change in specific heat near $T_c$ is small, but resolvable, giving $Delta C_p/gamma T_c approx 1$. The application of a 140 kOe magnetic field suppresses $T_c$ by only $sim 4$ K when applied along the c-axis and by $sim 2$ K when applied perpendicular to the c-axis. The ratio of the anisotropic upper critical fields, $gamma = H_{c2}^{perp c} / H_{c2}^{| c}$, varies between 2.5 and 3.5 for temperatures down to $sim 2$ K below $T_c$.
We report the effect of applied pressures on magnetic and superconducting order in single crystals of the aliovalent La-doped iron pnictide material Ca$_{1-x}$La$_{x}$Fe$_{2}$As$_{2}$. Using electrical transport, elastic neutron scattering and resona nt tunnel diode oscillator measurements on samples under both quasi-hydrostatic and hydrostatic pressure conditions, we report a series of phase diagrams spanning the range of substitution concentrations for both antiferromagnetic and superconducting ground states that include pressure-tuning through the antiferromagnetic (AFM) quantum critical point. Our results indicate that the observed superconducting phase with maximum transition temperature of $T_{c}$=47 K is intrinsic to these materials, appearing only upon suppression of magnetic order by pressure tuning through the AFM critical point. In contrast to all other intermetallic iron-pnictide superconductors with the ThCr$_2$Si$_2$ structure, this superconducting phase appears to exist only exclusively from the antiferromagnetic phase in a manner similar to the oxygen- and fluorine-based iron-pnictide superconductors with the highest transition temperatures reported to date. The unusual dichotomy between lower-$T_{c}$ systems with coexistent superconductivity and magnetism and the tendency for the highest-$T_{c}$ systems to show non-coexistence provides an important insight into the distinct transition temperature limits in different members of the iron-based superconductor family.
264 - Ya-Bin Liu , Yi Liu , Wen-He Jiao 2018
We report Eu-local-spin magnetism and Ni-doping-induced superconductivity (SC) in a 112-type ferroarsenide system Eu(Fe$_{1-x}$Ni$_{x}$)As$_2$. The non-doped EuFeAs$_2$ exhibits two primary magnetic transitions at $sim$100 and $sim$ 40 K, probably as sociated with a spin-density-wave (SDW) transition and an antiferromagnetic ordering in the Fe and Eu sublattices, respectively. Two additional successive transitions possibly related to Eu-spin modulations appear at 15.5 and 6.5 K. For the Ni-doped sample with $x$ = 0.04, the SDW transition disappears, and SC emerges at $T_mathrm{c}$ = 17.5 K. The Eu-spin ordering remains at around 40 K, followed by the possible reentrant magnetic modulations with enhanced spin canting. Consequently, SC coexists with a weak spontaneous magnetization below 6.2 K in Eu(Fe$_{0.96}$Ni$_{0.04}$)As$_2$, which provides a complementary playground for the study of the interplay between SC and magnetism.
The precise momentum dependence of the superconducting gap in the iron-arsenide superconductor with Tc = 32K (BKFA) was determined from angle-resolved photoemission spectroscopy (ARPES) via fitting the distribution of the quasiparticle density to a m odel. The model incorporates finite lifetime and experimental resolution effects, as well as accounts for peculiarities of BKFA electronic structure. We have found that the value of the superconducting gap is practically the same for the inner Gamma-barrel, X-pocket, and blade-pocket, and equals 9 meV, while the gap on the outer Gamma-barrel is estimated to be less than 4 meV, resulting in 2Delta/kT_c=6.8 for the large gap, and 2Delta/kT_c<3 for the small gap. A large (77 pm 3%) non-superconducting component in the photoemission signal is observed below T_c. Details of gap extraction from ARPES data are discussed in Appendix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا