ﻻ يوجد ملخص باللغة العربية
Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogens epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in subpopulations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogens persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of different phenomena including local extinction and emergence of epidemic waves, and assess the conditions for large scale spreading. Findings are highlighted in reference to previous works and to real scenarios. Our work uncovers the crucial role of hosts mobility on the ecological dynamics of rapidly mutating pathogens, opening the path for further studies on disease ecology in the presence of a complex and heterogeneous environment.
In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions
Non-pharmacologic interventions (NPIs) are one method to mitigate the spread and effects of the COVID-19 pandemic in the United States. NPIs promote protective actions to reduce exposure risk and can reduce mobility patterns within communities. Growi
We present new empirical evidence, based on millions of interactions on Twitter, confirming that human contacts scale with population sizes. We integrate such observations into a reaction-diffusion metapopulation framework providing an analytical exp
Residential mobility is deeply entangled with all aspects of hunter-gatherer life ways, and is therefore an issue of central importance in hunter-gatherer studies. Hunter-gatherers vary widely in annual rates of residential mobility, and understandin
Understanding influencing factors is essential for the surveillance and prevention of infectious diseases, and the factors are likely to vary spatially and temporally as the disease progresses. Taking daily cases and deaths data during the coronaviru