ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid CPU-GPU generation of the Hamiltonian and Overlap matrices in FLAPW methods

74   0   0.0 ( 0 )
 نشر من قبل Diego Fabregat-Traver
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we focus on the integration of high-performance numerical libraries in ab initio codes and the portability of performance and scalability. The target of our work is FLEUR, a software for electronic structure calculations developed in the Forschungszentrum Julich over the course of two decades. The presented work follows up on a previous effort to modernize legacy code by re-engineering and rewriting it in terms of highly optimized libraries. We illustrate how this initial effort to get efficient and portable shared-memory code enables fast porting of the code to emerging heterogeneous architectures. More specifically, we port the code to nodes equipped with multiple GPUs. We divide our study in two parts. First, we show considerable speedups attained by minor and relatively straightforward code changes to off-load parts of the computation to the GPUs. Then, we identify further possible improvements to achieve even higher performance and scalability. On a system consisting of 16-cores and 2 GPUs, we observe speedups of up to 5x with respect to our optimized shared-memory code, which in turn means between 7.5x and 12.5x speedup with respect to the original FLEUR code.



قيم البحث

اقرأ أيضاً

142 - Edoardo Di Napoli 2016
One of the greatest efforts of computational scientists is to translate the mathematical model describing a class of physical phenomena into large and complex codes. Many of these codes face the difficulty of implementing the mathematical operations in the model in terms of low level optimized kernels offering both performance and portability. Legacy codes suffer from the additional curse of rigid design choices based on outdated performance metrics (e.g. minimization of memory footprint). Using a representative code from the Materials Science community, we propose a methodology to restructure the most expensive operations in terms of an optimized combination of dense linear algebra kernels. The resulting algorithm guarantees an increased performance and an extended life span of this code enabling larger scale simulations.
The Kernel Polynomial Method (KPM) is a well-established scheme in quantum physics and quantum chemistry to determine the eigenvalue density and spectral properties of large sparse matrices. In this work we demonstrate the high optimization potential and feasibility of peta-scale heterogeneous CPU-GPU implementations of the KPM. At the node level we show that it is possible to decouple the sparse matrix problem posed by KPM from main memory bandwidth both on CPU and GPU. To alleviate the effects of scattered data access we combine loosely coupled outer iterations with tightly coupled block sparse matrix multiple vector operations, which enables pure data streaming. All optimizations are guided by a performance analysis and modelling process that indicates how the computational bottlenecks change with each optimization step. Finally we use the optimized node-level KPM with a hybrid-parallel framework to perform large scale heterogeneous electronic structure calculations for novel topological materials on a petascale-class Cray XC30 system.
111 - A. H. Hassan , C. J. Fluke , 2011
Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, t he increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed todays single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a software as a service manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.
We present a general method for accelerating by more than an order of magnitude the convolution of pixelated functions on the sphere with a radially-symmetric kernel. Our method splits the kernel into a compact real-space component and a compact sphe rical harmonic space component. These components can then be convolved in parallel using an inexpensive commodity GPU and a CPU. We provide models for the computational cost of both real-space and Fourier space convolutions and an estimate for the approximation error. Using these models we can determine the optimum split that minimizes the wall clock time for the convolution while satisfying the desired error bounds. We apply this technique to the problem of simulating a cosmic microwave background (CMB) anisotropy sky map at the resolution typical of the high resolution maps produced by the Planck mission. For the main Planck CMB science channels we achieve a speedup of over a factor of ten, assuming an acceptable fractional rms error of order 1.e-5 in the power spectrum of the output map.
The Jaccard similarity index is an important measure of the overlap of two sets, widely used in machine learning, computational genomics, information retrieval, and many other areas. We design and implement SimilarityAtScale, the first communication- efficient distributed algorithm for computing the Jaccard similarity among pairs of large datasets. Our algorithm provides an efficient encoding of this problem into a multiplication of sparse matrices. Both the encoding and sparse matrix product are performed in a way that minimizes data movement in terms of communication and synchronization costs. We apply our algorithm to obtain similarity among all pairs of a set of large samples of genomes. This task is a key part of modern metagenomics analysis and an evergrowing need due to the increasing availability of high-throughput DNA sequencing data. The resulting scheme is the first to enable accurate Jaccard distance derivations for massive datasets, using largescale distributed-memory systems. We package our routines in a tool, called GenomeAtScale, that combines the proposed algorithm with tools for processing input sequences. Our evaluation on real data illustrates that one can use GenomeAtScale to effectively employ tens of thousands of processors to reach new frontiers in large-scale genomic and metagenomic analysis. While GenomeAtScale can be used to foster DNA research, the more general underlying SimilarityAtScale algorithm may be used for high-performance distributed similarity computations in other data analytics application domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا