ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems

146   0   0.0 ( 0 )
 نشر من قبل Moritz Kreutzer
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kernel Polynomial Method (KPM) is a well-established scheme in quantum physics and quantum chemistry to determine the eigenvalue density and spectral properties of large sparse matrices. In this work we demonstrate the high optimization potential and feasibility of peta-scale heterogeneous CPU-GPU implementations of the KPM. At the node level we show that it is possible to decouple the sparse matrix problem posed by KPM from main memory bandwidth both on CPU and GPU. To alleviate the effects of scattered data access we combine loosely coupled outer iterations with tightly coupled block sparse matrix multiple vector operations, which enables pure data streaming. All optimizations are guided by a performance analysis and modelling process that indicates how the computational bottlenecks change with each optimization step. Finally we use the optimized node-level KPM with a hybrid-parallel framework to perform large scale heterogeneous electronic structure calculations for novel topological materials on a petascale-class Cray XC30 system.



قيم البحث

اقرأ أيضاً

In this paper we focus on the integration of high-performance numerical libraries in ab initio codes and the portability of performance and scalability. The target of our work is FLEUR, a software for electronic structure calculations developed in th e Forschungszentrum Julich over the course of two decades. The presented work follows up on a previous effort to modernize legacy code by re-engineering and rewriting it in terms of highly optimized libraries. We illustrate how this initial effort to get efficient and portable shared-memory code enables fast porting of the code to emerging heterogeneous architectures. More specifically, we port the code to nodes equipped with multiple GPUs. We divide our study in two parts. First, we show considerable speedups attained by minor and relatively straightforward code changes to off-load parts of the computation to the GPUs. Then, we identify further possible improvements to achieve even higher performance and scalability. On a system consisting of 16-cores and 2 GPUs, we observe speedups of up to 5x with respect to our optimized shared-memory code, which in turn means between 7.5x and 12.5x speedup with respect to the original FLEUR code.
The Kernel Polynomial Method (KPM) is one of the fast diagonalization methods used for simulations of quantum systems in research fields of condensed matter physics and chemistry. The algorithm has a difficulty to be parallelized on a cluster compute r or a supercomputer due to the fine-gain recursive calculations. This paper proposes an implementation of the KPM on the recent graphics processing units (GPU) where the recursive calculations are able to be parallelized in the massively parallel environment. This paper also illustrates performance evaluations regarding the cases when the actual simulation parameters are applied, the one for increased intensive calculations and the one for increased amount of memory usage. Finally, it concludes that the performance on GPU promises very high performance compared to the one on CPU and reduces the overall simulation time.
We present a general method for accelerating by more than an order of magnitude the convolution of pixelated functions on the sphere with a radially-symmetric kernel. Our method splits the kernel into a compact real-space component and a compact sphe rical harmonic space component. These components can then be convolved in parallel using an inexpensive commodity GPU and a CPU. We provide models for the computational cost of both real-space and Fourier space convolutions and an estimate for the approximation error. Using these models we can determine the optimum split that minimizes the wall clock time for the convolution while satisfying the desired error bounds. We apply this technique to the problem of simulating a cosmic microwave background (CMB) anisotropy sky map at the resolution typical of the high resolution maps produced by the Planck mission. For the main Planck CMB science channels we achieve a speedup of over a factor of ten, assuming an acceptable fractional rms error of order 1.e-5 in the power spectrum of the output map.
234 - Frank Winter 2012
Over the past years GPUs have been successfully applied to the task of inverting the fermion matrix in lattice QCD calculations. Even strong scaling to capability-level supercomputers, corresponding to O(100) GPUs or more has been achieved. However s trong scaling a whole gauge field generation algorithm to this regim requires significantly more functionality than just having the matrix inverter utilizing the GPUs and has not yet been accomplished. This contribution extends QDP-JIT, the migration of SciDAC QDP++ to GPU-enabled parallel systems, to help to strong scale the whole Hybrid Monte-Carlo to this regime. Initial results are shown for gauge field generation with Chroma simulating pure Wilson fermions on OLCF TitanDev.
Much of the current focus in high-performance computing is on multi-threading, multi-computing, and graphics processing unit (GPU) computing. However, vectorization and non-parallel optimization techniques, which can often be employed additionally, a re less frequently discussed. In this paper, we present an analysis of several optimizations done on both central processing unit (CPU) and GPU implementations of a particular computationally intensive Metropolis Monte Carlo algorithm. Explicit vectorization on the CPU and the equivalent, explicit memory coalescing, on the GPU are found to be critical to achieving good performance of this algorithm in both environments. The fully-optimized CPU version achieves a 9x to 12x speedup over the original CPU version, in addition to speedup from multi-threading. This is 2x faster than the fully-optimized GPU version.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا