ﻻ يوجد ملخص باللغة العربية
The Kernel Polynomial Method (KPM) is a well-established scheme in quantum physics and quantum chemistry to determine the eigenvalue density and spectral properties of large sparse matrices. In this work we demonstrate the high optimization potential and feasibility of peta-scale heterogeneous CPU-GPU implementations of the KPM. At the node level we show that it is possible to decouple the sparse matrix problem posed by KPM from main memory bandwidth both on CPU and GPU. To alleviate the effects of scattered data access we combine loosely coupled outer iterations with tightly coupled block sparse matrix multiple vector operations, which enables pure data streaming. All optimizations are guided by a performance analysis and modelling process that indicates how the computational bottlenecks change with each optimization step. Finally we use the optimized node-level KPM with a hybrid-parallel framework to perform large scale heterogeneous electronic structure calculations for novel topological materials on a petascale-class Cray XC30 system.
In this paper we focus on the integration of high-performance numerical libraries in ab initio codes and the portability of performance and scalability. The target of our work is FLEUR, a software for electronic structure calculations developed in th
The Kernel Polynomial Method (KPM) is one of the fast diagonalization methods used for simulations of quantum systems in research fields of condensed matter physics and chemistry. The algorithm has a difficulty to be parallelized on a cluster compute
We present a general method for accelerating by more than an order of magnitude the convolution of pixelated functions on the sphere with a radially-symmetric kernel. Our method splits the kernel into a compact real-space component and a compact sphe
Over the past years GPUs have been successfully applied to the task of inverting the fermion matrix in lattice QCD calculations. Even strong scaling to capability-level supercomputers, corresponding to O(100) GPUs or more has been achieved. However s
Much of the current focus in high-performance computing is on multi-threading, multi-computing, and graphics processing unit (GPU) computing. However, vectorization and non-parallel optimization techniques, which can often be employed additionally, a