ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for strong evolution in galaxy environmental quenching efficiency between z = 1.6 and z = 0.9

68   0   0.0 ( 0 )
 نشر من قبل Julie Nantais
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the evolution of environmental quenching efficiency, the fraction of quenched cluster galaxies that would be star-forming if they were in the field, as a function of redshift in 14 spectroscopically confirmed galaxy clusters with 0.87 < z < 1.63 from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS). The clusters are the richest in the survey at each redshift. Passive fractions rise from $42_{-13}^{+10}$% at z ~ 1.6 to $80_{-9}^{+12}$% at z ~ 1.3 and $88_{-3}^{+4}$% at z < 1.1, outpacing the change in passive fraction in the field. Environmental quenching efficiency rises dramatically from $16_{-19}^{+15}$ at z ~ 1.6 to $62_{-15}^{+21}% at z ~ 1.3 and $73_{-7}^{+8}$% at z $lesssim$ 1.1. This work is the first to show direct observational evidence for a rapid increase in the strength of environmental quenching in galaxy clusters at z ~ 1.5, where simulations show cluster-mass halos undergo non-linear collapse and virialisation.

قيم البحث

اقرأ أيضاً

We investigate the stellar mass and baryonic mass Tully-Fisher relations (TFRs) of massive star-forming disk galaxies at redshift z~2.3 and z~0.9 as part of the KMOS^3D integral field spectroscopy survey. Our spatially resolved data allow reliable mo delling of individual galaxies, including the effect of pressure support on the inferred gravitational potential. At fixed circular velocity, we find higher baryonic masses and similar stellar masses at z~2.3 as compared to z~0.9. Together with the decreasing gas-to-stellar mass ratios with decreasing redshift, this implies that the contribution of dark matter to the dynamical mass at the galaxy scale increases towards lower redshift. A comparison to local relations reveals a negative evolution of the stellar and baryonic TFR zero-points from z=0 to z~0.9, no evolution of the stellar TFR zero-point from z~0.9 to z~2.3, and a positive evolution of the baryonic TFR zero-point from z~0.9 to z~2.3. We discuss a toy model of disk galaxy evolution to explain the observed, non-monotonic TFR evolution, taking into account the empirically motivated redshift dependencies of galactic gas fractions, and of the relative amount of baryons to dark matter on galaxy and halo scales.
We compute optical galaxy luminosity functions (GLFs) in the B, V, R, and I rest-frame bands for one of the largest medium-to-high-redshift (0.4 < z < 0.9) cluster samples to date in order to probe the abundance of faint galaxies in clusters. We also study how the GLFs depend on cluster redshift, mass, and substructure, and compare the GLFs of clusters with those of the field. We separately investigate the GLFs of blue and red-sequence (RS) galaxies to understand the evolution of different cluster populations. We find that the shapes of our GLFs are similar for the B, V, R, and I bands with a drop at the red GLF faint end that is more pronounced at high-redshift: alpha(red) ~ -0.5 at 0.40 < z < 0.65 and alpha(red) > 0.1 at 0.65 < z < 0.90. The blue GLFs have a steeper faint end (alpha(blue) ~ -1.6) than the red GLFs, that appears to be independent of redshift. For the full cluster sample, blue and red GLFs intersect at M(V) = -20, M(R) = -20.5, and M(I) = -20.3. A study of how galaxy types evolve with redshift shows that late type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Our results indicate that our clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late type galaxies then appear to evolve into early types, enriching the red-sequence between this redshift and today. This effect is consistent with the evolution of the faint end slope of the red-sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field environment at all redshifts might have replaced the blue late type galaxies that converted into early types, explaining the lack of evolution in the faint end slopes of the blue GLFs.
We present an analysis of galaxies in groups and clusters at $0.8<z<1.2$, from the GCLASS and GEEC2 spectroscopic surveys. We compute a conversion fraction $f_{rm convert}$ that represents the fraction of galaxies that were prematurely quenched by th eir environment. For massive galaxies, $M_{rm star}>10^{10.3}M_odot$, we find $f_{rm convert}sim 0.4$ in the groups and $sim 0.6$ in the clusters, similar to comparable measurements at $z=0$. This means the time between first accretion into a more massive halo and final star formation quenching is $t_psim 2$ Gyr. This is substantially longer than the estimated time required for a galaxys star formation rate to become zero once it starts to decline, suggesting there is a long delay time during which little differential evolution occurs. In contrast with local observations we find evidence that this delay timescale may depend on stellar mass, with $t_p$ approaching $t_{rm Hubble}$ for $M_{rm star}sim 10^{9.5}M_odot$. The result suggests that the delay time must not only be much shorter than it is today, but may also depend on stellar mass in a way that is not consistent with a simple evolution in proportion to the dynamical time. Instead, we find the data are well-matched by a model in which the decline in star formation is due to overconsumption, the exhaustion of a gas reservoir through star formation and expulsion via modest outflows in the absence of cosmological accretion. Dynamical gas removal processes, which are likely dominant in quenching newly accreted satellites today, may play only a secondary role at $z=1$.
Galaxies change their properties as they assemble into clusters. In order to understand the physics behind that, we need to go back in time and observe directly what is occurring in galaxies as they fall into a cluster. We have conducted a narrow-ban d and $J$-band imaging survey on a cluster CL1604-D at $z=0.923$ using a new infrared instrument SWIMS installed at the Subaru Telescope. The narrow-band filter, NB1261, matches to H$alpha$ emission from the cluster at $z=0.923$. Combined with a wide range of existing data from various surveys, we have investigated galaxy properties in and around this cluster in great detail. We have identified 27 H$alpha$ emitters associated with the cluster. They have significant overlap with MIPS 24$mu$m sources and are located exclusively in the star forming regime on the rest-frame $UVJ$ diagram. We have identified two groups of galaxies near the cluster in the 2D spatial distribution and the phase-space diagram, which are likely to be in-falling to the cluster main body. We have compared various physical properties of star forming galaxies, such as specific star formation rates (burstiness) and morphologies (merger) as a function of environment; cluster center, older group, younger group, and the field. As a result, a global picture has emerged on how the galaxy properties are altered as they assemble into a denser region. This includes the occurrence of mergers, enhancement of star formation activity, excursion to the dusty starburst phase, and eventual quenching to a passive phase.
We use photometric redshifts and statistical background subtraction to measure stellar mass functions in galaxy group-mass ($4.5-8times10^{13}~mathrm{M}_odot$) haloes at $1<z<1.5$. Groups are selected from COSMOS and SXDF, based on X-ray imaging and sparse spectroscopy. Stellar mass ($M_{mathrm{stellar}}$) functions are computed for quiescent and star-forming galaxies separately, based on their rest-frame $UVJ$ colours. From these we compute the quiescent fraction and quiescent fraction excess (QFE) relative to the field as a function of $M_{mathrm{stellar}}$. QFE increases with $M_{mathrm{stellar}}$, similar to more massive clusters at $1<z<1.5$. This contrasts with the apparent separability of $M_{mathrm{stellar}}$ and environmental factors on galaxy quiescent fractions at $zsim 0$. We then compare our results with higher mass clusters at $1<z<1.5$ and lower redshifts. We find a strong QFE dependence on halo mass at fixed $M_{mathrm{stellar}}$; well fit by a logarithmic slope of $mathrm{d}(mathrm{QFE})/mathrm{d}log (M_{mathrm{halo}}) sim 0.24 pm 0.04$ for all $M_{mathrm{stellar}}$ and redshift bins. This dependence is in remarkably good qualitative agreement with the hydrodynamic simulation BAHAMAS, but contradicts the observed dependence of QFE on $M_{mathrm{stellar}}$. We interpret the results using two toy models: one where a time delay until rapid (instantaneous) quenching begins upon accretion to the main progenitor (no pre-processing) and one where it starts upon first becoming a satellite (pre-processing). Delay times appear to be halo mass dependent, with a significantly stronger dependence required without pre-processing. We conclude that our results support models in which environmental quenching begins in low-mass ($<10^{14}M_odot$) haloes at $z>1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا