ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of the cluster optical galaxy luminosity function between z=0.4 and 0.9 in the DAFT/FADA survey

67   0   0.0 ( 0 )
 نشر من قبل Nicolas Martinet
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute optical galaxy luminosity functions (GLFs) in the B, V, R, and I rest-frame bands for one of the largest medium-to-high-redshift (0.4 < z < 0.9) cluster samples to date in order to probe the abundance of faint galaxies in clusters. We also study how the GLFs depend on cluster redshift, mass, and substructure, and compare the GLFs of clusters with those of the field. We separately investigate the GLFs of blue and red-sequence (RS) galaxies to understand the evolution of different cluster populations. We find that the shapes of our GLFs are similar for the B, V, R, and I bands with a drop at the red GLF faint end that is more pronounced at high-redshift: alpha(red) ~ -0.5 at 0.40 < z < 0.65 and alpha(red) > 0.1 at 0.65 < z < 0.90. The blue GLFs have a steeper faint end (alpha(blue) ~ -1.6) than the red GLFs, that appears to be independent of redshift. For the full cluster sample, blue and red GLFs intersect at M(V) = -20, M(R) = -20.5, and M(I) = -20.3. A study of how galaxy types evolve with redshift shows that late type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Our results indicate that our clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late type galaxies then appear to evolve into early types, enriching the red-sequence between this redshift and today. This effect is consistent with the evolution of the faint end slope of the red-sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field environment at all redshifts might have replaced the blue late type galaxies that converted into early types, explaining the lack of evolution in the faint end slopes of the blue GLFs.

قيم البحث

اقرأ أيضاً

118 - L. Guennou , C. Adami , F. Durret 2013
We analyse the structures of all the clusters in the DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range is available, with the aim of detecting substructures and evidence for merging events. Thes e properties are discussed in the framework of standard cold dark matter cosmology.XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a beta-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. Only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first cluster pericentre approach and are relatively recent infalls. We also find hints of a decreasing X-ray gas density profile core radius with redshift. The percentage of mass included in substructures was found to be roughly constant with redshift with values of 5-15%, in agreement both with the general CDM framework and with the results of numerical simulations. Galaxies in substructures show the same general behaviour as regular cluster galaxies; however, in substructures, there is a deficiency of both late type and old stellar population galaxies. Late type galaxies with recent bursts of star formation seem to be missing in the substructures close to the bottom of the host cluster potential well. However, our sample would need to be increased to allow a more robust analysis.
Studying the transformation of cluster galaxies contributes a lot to have a clear picture of evolution of the universe. Towards that we are studying different properties (morphology, star formation, AGN contribution and metallicity) of galaxies in cl usters up to $zsim1.0$ taking three different clusters: ZwCl0024+1652 at $zsim0.4$, RXJ1257+4738 at $zsim0.9$ and Virgo at $zsim0.0038$. For ZwCl0024+1652 and RXJ1257+4738 clusters we used tunable filters data from GLACE survey taken with GTC 10.4 m telescope and other public data, while for Virgo we used public data. We did the morphological classification of 180 galaxies in ZwCl0024+1652 using galSVM, where 54% and 46% of galaxies were classified as early-type (ET) and late-type (LT) respectively. We did a comparison between the three clusters within the clustercentric distance of 1Mpc and found that ET proportion (decreasing with redshift) dominates over the LT (increasing with redshift) throughout. We finalized the data reduction for ZwCl0024+1652 cluster and identified 46 [OIII] and 73 H$beta$ emission lines. For this cluster we have classified 22 emission line galaxies (ELGs) using BPT-NII diagnostic diagram resulting with 14 composite, 1 AGN and 7 star forming (SF) galaxies. We are using these results, together with the public data, for further analysis of the variations of properties in relation to redshift within $z<1.0$.
We utilize deep near-infrared survey data from the UltraVISTA fourth data release (DR4) and the VIDEO survey, in combination with overlapping optical and Spitzer data, to search for bright star-forming galaxies at $z gtrsim 7.5$. Using a full photome tric redshift fitting analysis applied to the $sim 6,{rm deg}^2$ of imaging searched, we find 27 Lyman-break galaxies (LBGs), including 20 new sources, with best-fitting photometric redshifts in the range $7.4 < z < 9.1$. From this sample we derive the rest-frame UV luminosity function (LF) at $z = 8$ and $z = 9$ out to extremely bright UV magnitudes ($M_{rm UV} simeq -23$) for the first time. We find an excess in the number density of bright galaxies in comparison to the typically assumed Schechter functional form derived from fainter samples. Combined with previous studies at lower redshift, our results show that there is little evolution in the number density of very bright ($M_{rm UV} sim -23$) LBGs between $z simeq 5$ and $zsimeq 9$. The tentative detection of an LBG with best-fit photometric redshift of $z = 10.9 pm 1.0$ in our data is consistent with the derived evolution. We show that a double power-law fit with a brightening characteristic magnitude ($Delta M^*/Delta z simeq -0.5$) and a steadily steepening bright-end slope ($Delta beta/Delta z simeq -0.5$) provides a good description of the $z > 5$ data over a wide range in absolute UV magnitude ($-23 < M_{rm UV} < -17$). We postulate that the observed evolution can be explained by a lack of mass quenching at very high redshifts in combination with increasing dust obscuration within the first $sim 1 ,{rm Gyr}$ of galaxy evolution.
We present the results of a search for bright (-22.7 < M_UV < -20.5) Lyman-break galaxies at z ~ 6 within a total of 1.65 square degrees of imaging in the UltraVISTA/COSMOS and UKIDSS UDS/SXDS fields. The deep near-infrared imaging available in the t wo independent fields, in addition to deep optical (including z-band) data, enables the sample of z ~ 6 star-forming galaxies to be securely detected long-ward of the break (in contrast to several previous studies). We show that the expected contamination rate of our initial sample by cool galactic brown dwarfs is < 3 per cent and demonstrate that they can be effectively removed by fitting brown dwarf spectral templates to the photometry. At z ~ 6 the galaxy surface density in the UltraVISTA field exceeds that in the UDS by a factor of ~ 1.8, indicating strong cosmic variance even between degree-scale fields at z > 5. We calculate the bright end of the rest-frame Ultra-Violet (UV) luminosity function (LF) at z ~ 6. The galaxy number counts are a factor of ~1.7 lower than predicted by the recent LF determination by Bouwens et al.. In comparison to other smaller area studies, we find an evolution in the characteristic magnitude between z ~ 5 and z ~ 7 of dM* ~ 0.4 mag, and show that a double power-law or a Schechter function can equally well describe the LF at z = 6. Furthermore, the bright-end of the LF appears to steepen from z ~ 7 to z ~ 5, which could indicate the onset of mass quenching or the rise of dust obscuration, a conclusion supported by comparing the observed LFs to a range of theoretical model predictions.
208 - L.Guennou , C.Adami , M.P.Ulmer 2010
As a contribution to the understanding of the dark energy concept, the Dark energy American French Team (DAFT, in French FADA) has started a large project to characterize statistically high redshift galaxy clusters, infer cosmological constraints fro m Weak Lensing Tomography, and understand biases relevant for constraining dark energy and cluster physics in future cluster and cosmological experiments. The purpose of this paper is to establish the basis of reference for the photo-z determination used in all our subsequent papers, including weak lensing tomography studies. This project is based on a sample of 91 high redshift (z>0.4), massive clusters with existing HST imaging, for which we are presently performing complementary multi-wavelength imaging. This allows us in particular to estimate spectral types and determine accurate photometric redshifts for galaxies along the lines of sight to the first ten clusters for which all the required data are available down to a limit of I_AB=24/24.5 with the LePhare software. The accuracy in redshift is of the order of 0.05 for the range 0.2<z<1.5. We verified that the technique applied to obtain photometric redshifts works well by comparing our results to with previous works. In clusters, photoz accuracy is degraded for bright absolute magnitudes and for the latest and earliest type galaxies. The photoz accuracy also only slightly varies as a function of the spectral type for field galaxies. As a consequence, we find evidence for an environmental dependence of the photoz accuracy, interpreted as the standard used Spectral Energy Distributions being not very well suited to cluster galaxies. Finally, we modeled the LCDCS 0504 mass with the strong arcs detected along this line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا