ترغب بنشر مسار تعليمي؟ اضغط هنا

MuSIC: delivering the worlds most intense muon beam

98   0   0.0 ( 0 )
 نشر من قبل Matthew Wing
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new muon beamline, muon science innovative channel (MuSIC), was set up at the Research Centre for Nuclear Physics (RCNP), Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid the first $36^circ$ of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beamline. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively-charged muons, the X-ray spectrum yielded by muonic atoms in the target were measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded $(10.4 pm 2.7) times 10^5$ muons per Watt of proton beam power ($mu^+$ and $mu^-$), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of $(4.2 pm 1.1) times 10^8$ muons s$^{-1}$, amongst the highest in the world. The number of $mu^-$ measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The set up is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.



قيم البحث

اقرأ أيضاً

134 - Jun Cao , Miao He , Zhi-Long Hou 2014
Neutrino beam with about 300 MeV in energy, high-flux and medium baseline is considered a rational choice for measuring CP violation before the more powerful Neutrino Factory will be built. Following this concept, a unique neutrino beam facility base d on muon-decayed neutrinos is proposed. The facility adopts a continuous-wave proton linac of 1.5 GeV and 10 mA as the proton driver, which can deliver an extremely high beam power of 15 MW. Instead of pion-decayed neutrinos, unprecedentedly intense muon-decayed neutrinos are used for better background discrimination. The schematic design for the facility is presented here, including the proton driver, the assembly of a mercury-jet target and capture superconducting solenoids, a pion/muon beam transport line, a long muon decay channel of about 600 m and the detector concept. The physics prospects and the technical challenges are also discussed.
An energetic muon beam is an attractive key to unlock new physics beyond the Standard Model: the lepton flavor violation or the anomalous magnetic moment, and also is a competitive candidate for the expected neutrino factory. Lots of the muon scienti fic applications are limited by low flux cosmic-ray muons, low energy muon sources or extremely expensive muon accelerators. An prompt acceleration of the low-energy muon beam is found in the beam-driven plasma wakefield up to $mathrm{TV/m}$. The muon beam is accelerated from $275mathrm{MeV}$ to more than $10mathrm{GeV}$ within $22.5mathrm{ps}$. Choosing the injection time of the muon beam in a proper range, the longitudinal spatial distribution and the energy distribution of the accelerated muon beam are compressed. The efficiency of the energy transfer from the driven electron beam to the muon beam can reach $20%$. The prompt acceleration scheme is a promising avenue to bring the expected neutrino factory and the muon collider into reality and to catch new physics beyond the Standard Model.
Muon collider detector design and interaction region optimization are strongly correlated by the beam-induced background that finally determines the detector performance. Therefore, it is crucial to be able to study and optimize both of them simultan eously, being able to quantify the effects of interaction region elements modification on the beam-induced background fluxes and composition. An advanced simulation tool, based on the LineBuilder and Fluka programs, has been developed to produce beam-induced background events and to study their characteristics when the interaction region active and passive elements are changed. The tool characteristics, as well as the performance against previous simulations are presented together with the feature that allows to deeply study the beam-induced background point of origin.
149 - T. Albahri 2021
This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency $omega_a^m$ are associated with well-known effe cts owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to $omega_a^m$ is 0.50 $pm$ 0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of $omega_a^m$.
The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. In this paper a layout of a positron driven muon source known as the Low EMitt ance Muon Accelerator (LEMMA) concept is presented. The positron beam, stored in a ring with high energy acceptance and low emittance, is extracted and driven to a multi-target system, to produce muon pairs at threshold. This solution alleviates the issues related to the power deposited and the integrated Peak Energy Density Deposition (PEDD) on the targets. Muons produced in the multi-target system will then be accumulated before acceleration and injection in the collider. A multi-target line lattice has been designed to cope with the focusing of both the positron and muon beams. Studies on the number, material and thickness of the targets have been carried out. A general layout of the overall scheme and a description is presented, as well as plans for future R&D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا