ﻻ يوجد ملخص باللغة العربية
We study the class of vacuum (Ricci flat) six-dimensional spacetimes admitting a non-degenerate multiple Weyl aligned null direction l, thus being of Weyl type II or more special. Subject to an additional assumption on the asymptotic fall-off of the Weyl tensor, we prove that these spacetimes can be completely classified in terms of the two eigenvalues of the (asymptotic) twist matrix of l and of a discrete parameter $U^0=pm 1/2, 0$. All solutions turn out to be Kerr-Schild spacetimes of type D and reduce to a family of generalized Myers-Perry metrics (which include limits and analytic continuations of the original Myers-Perry black hole metric, such as certain NUT spacetimes). A special subcase corresponds to twisting solutions with zero shear. In passing, limits connecting various branches of solutions are briefly discussed.
We discuss the uniqueness of asymptotically flat and static spacetimes in the $n$-dimensional Einstein-conformal scalar system. This theory potentially has a singular point in the field equations where the effective Newton constant diverges. We will
The Newman-Janis and Giampieri algorithms are two simple methods to generate stationary rotating black hole solutions in four dimensions. In this paper, we obtain the Mayers-Perry black hole from the Schwartzchild solution in five dimensions using qu
It has been revealed that the first order symmetry operator for the linearized Einstein equation on a vacuum spacetime can be constructed from a Killing-Yano 3-form. This might be used to construct all or part of solutions to the field equation. In t
We calculate the effects of the electromagnetic self-force on a charged particle outside a five dimensional Myers-Perry space-time. Based on our earlier work [1], we obtain the self-force using quaternions in Janis-Newman and Giampieri algorithms. In
We study the most general solution for affine connections that are compatible with the variational principle in the Palatini formalism for the Einstein-Hilbert action (with possible minimally coupled matter terms). We find that there is a family of s