ترغب بنشر مسار تعليمي؟ اضغط هنا

On the uniqueness of the Myers-Perry spacetime as a type II(D) solution in six dimensions

59   0   0.0 ( 0 )
 نشر من قبل Marcello Ortaggio
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marcello Ortaggio




اسأل ChatGPT حول البحث

We study the class of vacuum (Ricci flat) six-dimensional spacetimes admitting a non-degenerate multiple Weyl aligned null direction l, thus being of Weyl type II or more special. Subject to an additional assumption on the asymptotic fall-off of the Weyl tensor, we prove that these spacetimes can be completely classified in terms of the two eigenvalues of the (asymptotic) twist matrix of l and of a discrete parameter $U^0=pm 1/2, 0$. All solutions turn out to be Kerr-Schild spacetimes of type D and reduce to a family of generalized Myers-Perry metrics (which include limits and analytic continuations of the original Myers-Perry black hole metric, such as certain NUT spacetimes). A special subcase corresponds to twisting solutions with zero shear. In passing, limits connecting various branches of solutions are briefly discussed.



قيم البحث

اقرأ أيضاً

We discuss the uniqueness of asymptotically flat and static spacetimes in the $n$-dimensional Einstein-conformal scalar system. This theory potentially has a singular point in the field equations where the effective Newton constant diverges. We will show that the static spacetime with the conformal scalar field outside a certain surface $S_p$ associated with the singular point is unique.
The Newman-Janis and Giampieri algorithms are two simple methods to generate stationary rotating black hole solutions in four dimensions. In this paper, we obtain the Mayers-Perry black hole from the Schwartzchild solution in five dimensions using qu aternions. Our method generates the Mayers-Perry black hole solution with two angular momenta in one fell swoop.
It has been revealed that the first order symmetry operator for the linearized Einstein equation on a vacuum spacetime can be constructed from a Killing-Yano 3-form. This might be used to construct all or part of solutions to the field equation. In t his paper, we perform a mode decomposition of a metric perturbation on the Schwarzschild spacetime and the Myers-Perry spacetime with equal angular momenta in 5 dimensions, and investigate the action of the symmetry operator on specific modes concretely. We show that on such spacetimes, there is no transition between the modes of a metric perturbation by the action of the symmetry operator, and it ends up being the linear combination of the infinitesimal transformations of isometry.
We calculate the effects of the electromagnetic self-force on a charged particle outside a five dimensional Myers-Perry space-time. Based on our earlier work [1], we obtain the self-force using quaternions in Janis-Newman and Giampieri algorithms. In four dimensional rotating space-time the electromagnetic self-force is repulsive at any point, however, in five dimensional rotational space-time, we find a point r0 where the electromagnetic self-force vanishes. For r < r0 (r > r0) the electromagnetic self-force is attractive (repulsive).
We study the most general solution for affine connections that are compatible with the variational principle in the Palatini formalism for the Einstein-Hilbert action (with possible minimally coupled matter terms). We find that there is a family of s olutions generalising the Levi-Civita connection, characterised by an arbitrary, non-dynamical vector field ${cal A}_mu$. We discuss the mathematical properties and the physical implications of this family and argue that, although there is a clear mathematical difference between these new Palatini connections and the Levi-Civita one, both unparametrised geodesics and the Einstein equation are shared by all of them. Moreover, the Palatini connections are characterised precisely by these two properties, as well as by other properties of its parallel transport. Based on this, we conclude that physical effects associated to the choice of one or the other will not be distinguishable, at least not at the level of solutions or test particle dynamics. We propose a geometrical interpretation for the existence and unobservability of the new solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا