ﻻ يوجد ملخص باللغة العربية
We calculate the effects of the electromagnetic self-force on a charged particle outside a five dimensional Myers-Perry space-time. Based on our earlier work [1], we obtain the self-force using quaternions in Janis-Newman and Giampieri algorithms. In four dimensional rotating space-time the electromagnetic self-force is repulsive at any point, however, in five dimensional rotational space-time, we find a point r0 where the electromagnetic self-force vanishes. For r < r0 (r > r0) the electromagnetic self-force is attractive (repulsive).
The Newman-Janis and Giampieri algorithms are two simple methods to generate stationary rotating black hole solutions in four dimensions. In this paper, we obtain the Mayers-Perry black hole from the Schwartzchild solution in five dimensions using qu
It has been revealed that the first order symmetry operator for the linearized Einstein equation on a vacuum spacetime can be constructed from a Killing-Yano 3-form. This might be used to construct all or part of solutions to the field equation. In t
We study the class of vacuum (Ricci flat) six-dimensional spacetimes admitting a non-degenerate multiple Weyl aligned null direction l, thus being of Weyl type II or more special. Subject to an additional assumption on the asymptotic fall-off of the
We calculate exactly the QNF of the vector type and scalar type electromagnetic fields propagating on a family of five-dimensional topological black holes. To get a discrete spectrum of quasinormal frequencies for the scalar type electromagnetic fiel
The equation of motion of an extended object in spacetime reduces to an ordinary differential equation in the presence of symmetry. By properly defining of the symmetry with notion of cohomogeneity, we discuss the method for classifying all these ext