ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of a Triple-cavity Photonic Molecule Based on Coupled Mode Theory

82   0   0.0 ( 0 )
 نشر من قبل Xiaoshun Jiang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we analyze a chain-linked triple-cavity photonic molecule (TCPM) with controllable coupling strengths between the cavities on their spectral properties and field (energy) distributions by solving eigenvalues and eigenvectors of the Hamiltonian matrix based on coupled mode theory. Phase transition is extended from double-cavity photonic molecules (DCPMs) to TCPMs, and evolutions of the supermode frequencies and linewidths are analyzed, which have synchronous relations with the degree of coherence between adjacent optical microcavities and energy distributions in the three cavities, respectively. We develop a superposition picture for the three supermodes of the TCPM, as interferences between supermodes of sub-DCPMs. In particular, we demonstrate the abnormal properties of the central supermode in TCPMs, such as dark state in middle cavity and phase shift when energy flowing between side cavities, which are promising in information processing and remote control of energy. General properties of TCPMs are summarized and limitation on linewidths are given. Finally, we make an interesting analog to intracavity electromagnetically induced transparency in multi-level atomic systems using the flexible TCPM platform under appropriate conditions.

قيم البحث

اقرأ أيضاً

Coupled mode theory (CMT) is a powerful framework for decomposing interactions between electromagnetic waves and scattering bodies into resonances and their couplings with power-carrying channels. It has widespread use in few-resonance, weakly couple d resonator systems across nanophotonics, but cannot be applied to the complex scatterers of emerging importance. We use quasinormal modes to develop an exact, ab initio generalized coupled mode theory from Maxwells equations. This quasinormal coupled mode theory, which we denote QCMT, enables a direct, mode-based construction of scattering matrices without resorting to external solvers or data. We consider canonical scattering bodies, for which we show that a CMT model will necessarily be highly inaccurate, whereas QCMT exhibits near-perfect accuracy.
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the pho tonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.
131 - X. Liu , T. Shimada , R. Miura 2014
We investigate the use of guided modes bound to defects in photonic crystals for achieving double resonances. Photoluminescence enhancement by more than three orders of magnitude has been observed when the excitation and emission wavelengths are simu ltaneously in resonance with the localized guided mode and cavity mode, respectively. We find that the localized guided modes are relatively insensitive to the size of the defect for one of the polarizations, allowing for flexible control over the wavelength combinations. This double resonance technique is expected to enable enhancement of photoluminescence and nonlinear wavelength conversion efficiencies in a wide variety of systems.
We present a first-principles method to compute radiation properties of ultra-high quality factor photonic crystal cavities. Our Frequency-domain Approach for Radiation (FAR) can compute the far-field radiation pattern and quality factor of cavity mo des $sim 100$ times more rapidly than conventional finite-difference time domain calculations. It also provides a simple rule for engineering the cavitys far-field radiation pattern.
Physical systems with discrete energy levels are ubiquitous in nature and are fundamental building blocks of quantum technology. Realizing controllable artifcial atom- and molecule-like systems for light would allow for coherent and dynamic control o f the frequency, amplitude and phase of photons. In this work, we demonstrate a photonic molecule with two distinct energy-levels and control it by external microwave excitation. We show signature two-level dynamics including microwave induced photonic Autler-Townes splitting, Stark shift, Rabi oscillation and Ramsey interference. Leveraging the coherent control of optical energy, we show on-demand photon storage and retrieval in optical microresonators by reconfguring the photonic molecule into a bright-dark mode pair. These results of dynamic control of light in a programmable and scalable electro-optic platform open doors to applications in microwave photonic signal processing, quantum photonics in the frequency domain, optical computing concepts and simulations of complex physical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا