ﻻ يوجد ملخص باللغة العربية
Stellar evolution models of massive stars are very sensitive to the adopted mass-loss scheme. The magnitude and evolution of mass-loss rates significantly affect the main sequence evolution, and the properties of post-main sequence objects, including their rotational velocities. Driven by potential discrepancies between theoretically predicted and observationally derived mass-loss rates in the OB star range, we particularly aim to investigate the response to mass-loss rates that are lower than currently adopted, in parallel with the mass-loss behavior at the first bi-stability jump. We perform 1D hydrodynamical model calculations of single $20 - 60 , M_{odot}$ Galactic ($Z = 0.014$) stars where the effects of stellar winds are already significant during the main sequence phase. We develop an experimental wind routine to examine the behavior and response of the models under the influence of different mass-loss rates. This observationally guided, simple and flexible wind routine is not a new mass-loss description but a useful tool based on the Wind-momentum Luminosity Relation and other scaling relations, and provides a meaningful base for various tests and comparisons. The main result of this study indicates a dichotomy when accounting for currently debated problems regarding mass-loss rates of hot massive stars. In a fully diffusive approach, and for commonly adopted initial rotational velocities, lower mass-loss rates than theoretically predicted require to invoke an additional source of angular momentum loss (either due to bi-stability braking, or yet unidentified) to brake down surface rotational velocities. [...]
Mass-loss rates and terminal wind velocities are key parameters that determine the kinetic wind energy and momenta of massive stars. Furthermore, accurate mass-loss rates determine the mass and rotational velocity evolution of mass stars, and their f
The Magnetism in Massive Stars (MiMeS) project represents the largest systematic survey of stellar magnetism ever undertaken. Based on a sample of over 550 Galactic B and O-type stars, the MiMeS project has derived the basic characteristics of magnet
The Chandra Carina Complex contains 200 known O- and B type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from t
We present a dense model grid with tailored input chemical composition appropriate for the Large Magellanic Cloud. We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fi
The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. We wish to inv