ترغب بنشر مسار تعليمي؟ اضغط هنا

Carina OB Stars: X-ray Signatures of Wind Shocks and Magnetic Fields

73   0   0.0 ( 0 )
 نشر من قبل Marc Gagne
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Chandra Carina Complex contains 200 known O- and B type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical Lx/Lbol relation, or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting it may be a massive binary with a period of >30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary, and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403 and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high Lx cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star.

قيم البحث

اقرأ أيضاً

Based on an analysis of the catalog of magnetic fields, we have investigated the statistical properties of the mean magnetic fields for OB stars. We show that the mean effective magnetic field ${cal B}$ of a star can be used as a statistically signif icant characteristic of its magnetic field. No correlation has been found between the mean magnetic field strength ${cal B}$ and projected rotational velocity of OB stars, which is consistent with the hypothesis about a fossil origin of the magnetic field. We have constructed the magnetic field distribution function for B stars, $F({cal B})$, that has a power-law dependence on ${cal B}$ with an exponent of $approx -1.82$. We have found a sharp decrease in the function $F({cal B})$F for ${cal B}lem 400 G$ that may be related to rapid dissipation of weak stellar surface magnetic fields.
308 - Y. Naze , P.S. Broos , L. Oskinova 2011
The key empirical property of the X-ray emission from O stars is a strong correlation between the bolometric and X-ray luminosities. In the framework of the Chandra Carina Complex Project, 129 O and B stars have been detected as X-ray sources; 78 of those, all with spectral type earlier than B3, have enough counts for at least a rough X-ray spectral characterization. This leads to an estimate of the Lx/Lbol ratio for an exceptional number of 60 O stars belonging to the same region and triples the number of Carina massive stars studied spectroscopically in X-rays. The derived log(Lx/Lbol) is -7.26 for single objects, with a dispersion of only 0.21dex. Using the properties of hot massive stars listed in the literature, we compare the X-ray luminosities of different types of objects. In the case of O stars, the Lx/Lbol ratios are similar for bright and faint objects, as well as for stars of different luminosity classes or spectral types. Binaries appear only slightly harder and slightly more luminous in X-rays than single objects; the differences are not formally significant (at the 1% level), except for the Lx/Lbol ratio in the medium (1.0--2.5keV) energy band. Weak-wind objects have similar X-ray luminosities but they display slightly softer spectra compared to normal O stars with the same bolometric luminosity. Discarding three overluminous objects, we find a very shallow trend of harder emission in brighter objects. The properties of the few B stars bright enough to yield some spectral information appear to be different overall (constant X-ray luminosities, harder spectra), hinting that another mechanism for producing X-rays, besides wind shocks, might be at work. However, it must be stressed that the earliest and X-ray brightest amongst these few detected objects are similar to the latest O stars, suggesting a possibly smooth transition between the two processes.
Mass-loss rates and terminal wind velocities are key parameters that determine the kinetic wind energy and momenta of massive stars. Furthermore, accurate mass-loss rates determine the mass and rotational velocity evolution of mass stars, and their f ates as neutron stars and black holes in function of metallicity (Z). Here we update our Monte Carlo mass-loss Recipe with new dynamically-consistent computations of the terminal wind velocity -- as a function of Z. These predictions are particularly timely as the HST ULLYSES project will observe ultraviolet spectra with blue-shifted P Cygni lines of hundreds of massive stars in the low-Z Large and Small Magellanic Clouds, as well as sub-SMC metallicity hosts. Around 35 000 K, we uncover a weak-wind dip and we present diagnostics to investigate its physics with ULLYSES and X-Shooter data. We discuss how the dip may provide important information on wind-driving physics, and how this is of key relevance towards finding a new gold-standard for OB star mass-loss rates. For B supergiants below the Fe IV to III bi-stability jump, the terminal velocity is found to be independent of Z and M, while the mass-loss rate still varies as $dot{M} propto Z^{0.85}$. For O-type stars above the bi-stability jump we find a terminal-velocity dependence of $v_{infty} propto Z^{0.19}$ and the Z-dependence of the mass-loss rate is found to be as shallow as $dot{M} propto Z^{0.42}$, implying that to reproduce the `heavy black holes from LIGO/VIRGO, the `low Z requirement becomes even more stringent than was previously anticipated.
63 - J. H. Kastner 2012
We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPl aNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 4 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of ~70%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar or Ring-like nebulae. All but one of the X-ray point sources detected at CSPNe display X-ray spectra that are harder than expected from hot (~100 kK) central star photospheres, possibly indicating a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages <~5x10^3 yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe.
98 - T. Morel , N. Castro , L. Fossati 2014
The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in mass ive stars. As of July 2014, a total of 98 objects were observed over 20 nights with FORS2 and HARPSpol. Our preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable field is low. This conclusion, now independently reached by two different surveys, has profound implications for any theoretical model attempting to explain the field formation in these objects. We discuss in this contribution some important issues addressed by our observations (e.g., the lower bound of the field strength) and the discovery of some remarkable objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا