ترغب بنشر مسار تعليمي؟ اضغط هنا

Ba$_{3}$M$_{x}$Ti$_{3-x}$O$_{9}$(M = Ir, Rh): A family of 5textit{textcolor{black}{d}}/4textit{textcolor{black}{d}}-based, diluted quantum spin liquids

56   0   0.0 ( 0 )
 نشر من قبل Ramender Kumar
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the structural and magnetic properties of the 4}textit{textcolor{black}{d }}textcolor{black}{(M = Rh) based and 5}textit{textcolor{black}{d }}textcolor{black}{(M = Ir) based systems Ba$_{3}$M$_{x}$Ti$_{3-x}$O$_{9}$ (nominally $x$ = 0.5, 1). The studied compositions were found to crystallize in a hexagonal structure with the centrosymmetric space group }$P6_{3}/mmc$.textcolor{black}{{} The structures comprise of A$_{2}$O$_{9}$ polyhedra (with the A site (possibly) statistically occupied by M and Ti) in which pairs of transition metal ions are stacked along the crystallographic }textit{textcolor{black}{c}}textcolor{black}{-axis. These pairs form triangular bilayers in the $ab$-plane. The magnetic Rh and Ir ions occupy these bilayers, diluted by Ti ions even for $x$ = 1. These bilayers are separated by a triangular layer which is dominantly occupied by Ti ions. From magnetization measurements we infer strong antiferromagnetic couplings for all of the materials but the absence of any spin-freezing or spin-ordering down to 2~K. Further, specific heat measurements down to 0.35~K show no sign of a phase transition for any of the compounds. Based on these thermodynamic measurements we propose the emergence of a quantum spin liquid ground state for Ba$_{3}$Rh$_{0.5}$Ti$_{2.5}$O$_{9}$, and Ba$_{3}$Ir$_{0.5}$Ti$_{2.5}$O$_{9}$, in addition to the already reported Ba$_{3}$IrTi$_{2}$O$_{9}$. }

قيم البحث

اقرأ أيضاً

Neutron diffraction for a polycrystalline sample of LaCo$_{0.8}$Rh$_{0.2}$O$_{3}$ and synchrotron x-ray diffraction for polycrystalline samples of LaCo$_{0.9}$Rh$_{0.1}$O$_{3}$ and LaCo$_{0.8}$Rh$_{0.2}$O$_{3}$ have been carried out in order to inves tigate the structural properties related with the spin state of Co$^{3+}$ ions. We have found that the values of the Co(Rh)-O bond lengths in the Co(Rh)O$_{6}$ octahedron of LaCo$_{0.8}$Rh$_{0.2}$O$_{3}$ are nearly identical at 10 K. The lattice volume for the Rh$^{3+}$ substituted samples decreases with the thermal expansion coefficient similar to that of LaCoO$_{3}$ from room temperature, and ceases to decrease around 70 K. These experimental results favor a mixed state consisting of the high-spin-state and low-spin-state Co$^{3+}$ ions, and suggest that the high-spin-state Co$^{3+}$ ions are thermally excited in addition to those pinned by the substituted Rh$^{3+}$ ions.
Ba$_3$Mn$_2$O$_8$ is a geometrically frustrated spin dimer compound. We investigate the effect of site disorder on the zero field phase diagram of this material by considering the solid solution Ba$_{3}$(Mn$_{1-x}$V$_{x}$)$_{2}$O$_{8}$, where nonmagn etic V$^{5+}$ ions partially substitute magnetic Mn$^{5+}$ ions. This substitution results in unpaired $S=1$ moments for half-substituted dimers, which are ungapped and therefore susceptible to types of magnetic order not present in the parent compound. AC susceptibility measurements of compositions between $x=0.046$ and $x=0.84$ show a sharp frequency- and composition-dependent kink at temperatures below 210mK, suggesting that unpaired spins form a spin glass. The case for a glassy state is made clearer by the absence of any sharp features in the specific heat. However, Ba$_{3}$(Mn$_{1-x}$V$_{x}$)$_{2}$O$_{8}$ is not a paradigmatic spin glass. Whereas both the freezing temperature and the Weiss temperature (determined from susceptibility above 1K) vary strongly as a function of composition, the heat capacity per unpaired spin is found to be insensitive (above the glass transition) to the density of unpaired spins for the broad regime $0.18leq x leq 0.84$. This surprising result is consistent with a scenario in which nearest-neighbor unpaired spins form local, possibly fluctuating, spin-singlets prior to the eventual spin freezing. The spin glass state is only found for temperatures below the energy scale of single-ion anisotropy, suggestive this plays a significant role in determining the eventual ground state. Possible ground states in the dilute limit ($x < 0.04$ and $x > 0.9$) are also discussed.
The intermediate valence compounds Yb2M3Ga9 (M = Rh, Ir) exhibit an anisotropic magnetic susceptibility. We report measurements of the temperature dependence of the 4f occupation number, nf(T), for Yb2M3Ga9 as well as the magnetic inelastic neutron s cattering spectrum Smag at 12 and 300 K for Yb2Rh3Ga9. Both nf(T) and Smag were calculated for the Anderson impurity model with crystal field terms within an approach based on the non-crossing approximation. These results corroborate the importance of crystal field effects in these materials; they also suggest that Anderson lattice effects are important to the physics of Yb2M3Ga9.
Dielectric and magnetic properties have been studied for poly-crystalline samples of quasi-one-dimensional frustrated spin-1/2 system Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$(M=Ni and Zn) which does not exhibit a three-dimensional magnetic t ransition due to quantum spin fluctuation and low dimensionality. A broad peak in the magnetic susceptibility - temperature curves originated from a short range helical ordering at low temperature is suppressed by the Ni and Zn substitution for Cu sites. The capacitance is found to anomalously increase with decreasing T below ~50 K, which is also suppressed by the impurity doping. The behavior of the anomalous capacitance component is found to be strongly connected with that of the magnetic susceptibility for Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$ which indicates that the low-temperature dielectric response is driven by the magnetism.
H3LiIr2O6 is the first honeycomb-lattice system without any signs of long-range magnetic order down to the lowest temperatures, raising the hope for the realization of an ideal Kitaev quantum spin liquid. Its honeycomb layers are coupled by interlaye r hydrogen bonds. Static or dynamic disorder of these hydrogen bonds was proposed to strongly affect the magnetic exchange and to make Kitaev-type interactions dominant. Using dielectric spectroscopy, here we provide experimental evidence for dipolar relaxations in H3LiIr2O6 and deuterated D3LiIr2O6, which mirror the dynamics of protons and deuterons within the double-well potentials of the hydrogen bonds. The detected hydrogen dynamics reveals glassy freezing, characterized by a strong slowing down under cooling, with a crossover from thermally-activated hopping to quantum-mechanical tunneling towards low temperatures. Thus, besides being Kitaev quantum-spin-liquid candidates, these materials also are quantum paraelectrics. However, the small relaxation rates in the mHz range, found at low temperatures, practically realize quasi-static hydrogen disorder, as assumed in recent theoretical works to explain the quantum-spin-liquid ground state of both compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا